Got smell? Research shows that accurate taste perception relies on a functioning olfactory system

December 22, 2009

As anyone suffering through a head cold knows, food tastes wrong when the nose is clogged, an experience that leads many to conclude that the sense of taste operates normally only when the olfactory system is also in good working order. Evidence that the taste system influences olfactory perception, however, has been vanishingly rare—until now. In a novel study this week in Nature Neuroscience, Brandeis researchers report just such an influence.

Neuroscientist Don Katz and colleagues discovered that if the taste in rats is inactivated when a rat first smells an odor, at least a food odor, then the rat subsequently will only recognize the food associated with that odor if the taste cortex is again inactivated.

"We discovered that rats use their taste system to smell with, so when you knock out the taste cortex, even for an hour, as we did, you alter their sense of smell," explained Katz. The researchers wrote that "this is the only example of state dependency in function of which we are aware."

Katz and his colleagues used a multi-step training process to test the interdependence of the taste and olfactory systems. In the first step, a demonstrator rat that had just eaten chow flavored with one of four spices was introduced to a subject rat, which then smelled the demonstrator rat's breath.

In the second step, the subject rat was offered two choices of chow: one dish with the same flavor previously consumed by the demonstrator rat and another with a different flavor. The subject rat reliably preferred the food that it had previously smelled on the demonstrator rat's breath the day before. The researchers concluded that the social "smell test" of rat's breath is a good enough cue for rats to prefer one food over another.

At the outset they predicted that the rat's sense of smell would not be affected by changes in its taste system. "But we were wrong," said Katz. "Most surprisingly, the whose taste cortex was knocked out again the next day preferred the chow that they had experienced in an altered state, with no taste cortex.

"We discovered in this experiment that the sensory systems don't work in isolation from each other, said Katz. "One part of the cortex takes direct input from the nose, and one part from the tongue, and while it's convenient to think that the nose and taste receptors operate independently, they don't."

Katz actually tested two possible explanations for the basic result: First, taste cortex might be an integral component of how the animal processes smells. Alternatively, it might be that taste cortex changes, or modulates, olfactory circuits rather than coding them, fundamentally changing perception of smell at that point in time. Such "incorrect" memories of smell apparently last across at least a week of the rats' lives, and perhaps forever.

The Katz lab is now using brain recordings to pinpoint which parts of the are affected when taste cortex is silenced, and to characterize the nature of the interaction between the taste and smell systems during feeding.

"I am hoping that ultimately this discovery will help drive us to an entirely different approach to brain function," said Katz. "It doesn't make sense to probe one system separately from the other. Just like in a chorus, you can't appreciate the fullness of the music if you hear only the bass or the tenor in isolation."

Related Stories

Recommended for you

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017
Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.