Rain or Shine? Computer Models How Brain Cells Reach a Decision

December 14, 2009,

(PhysOrg.com) -- Yale University researchers have devised a computer model to explain how the brain makes decisions based on statistical probabilities-as, for instance, when a doctor makes a diagnosis based on several conflicting test results.

Yale University researchers have devised a to explain how the brain makes decisions based on statistical probabilities—as, for instance, when a doctor makes a diagnosis based on several conflicting test results.

In a study published online December 13 in the journal , Xiao-Jing Wang, professor of neurobiology at Yale School of Medicine and at the Kavli Institute of Neuroscience, proposes that synapses—the connections between neurons—are capable of computing probabilities from observed cues in order to make a statistical inference.

“We often need to make probabilistic inference—like deducing which of the numerous foods we ate made us sick, reaching a medical diagnosis based on symptoms and test results, or deciding whether it will rain or shine given a few pieces of information about the atmosphere,” Wang said. “Such decisions are based on the calculus of chance or the statistical theory of prediction.”

With his former postdoctoral associate Alireza Soltani, now at the California Institute of Technology, Wang built computer models of neural circuits to investigate how such probabilistic decisions are carried out in the brain. The model explains a phenomenon called “base rate neglect” observed in humans. Base rate neglect roughly means that a piece of information (for example, a test result that shows a spot on the lung) that is equally predictive of two possible outcomes (I have cancer or I do not have cancer) is perceived by people to be more predictive for the one that is less probable (I have cancer).

“What's interesting is that such complicated probabilistic computations and psychological phenomena can now be studied, perhaps explained, in terms of the neural computation in the brain,” Wang said.

Provided by Yale University (news : web)

Related Stories

Recommended for you

A peek into the interplay between sleep and wakefulness

July 20, 2018
Sleep is an autonomic process and is not always under our direct, voluntary control. Awake or asleep, we are basically under the regulation of two biological processes: sleep homeostasis, commonly known as 'sleep pressure', ...

Paralyzed mice with spinal cord injury made to walk again

July 19, 2018
Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn't completely severed. Why don't the spared portions of the spinal cord keep working? Researchers at Boston Children's Hospital ...

Neural inflammation plays critical role in stress-induced depression

July 19, 2018
A group of Japanese researchers has discovered that neural inflammation caused by the innate immune system plays an unexpectedly important role in stress-induced depression. This insight could potentially lead to the development ...

Scientists uncover the role of a protein in production and survival of myelin-forming cells

July 19, 2018
The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin—a membrane produced by specialized glial cells—plays a critical role in protecting ...

Understanding the neuroscience of binge drinking

July 19, 2018
A new study from researchers at Columbia University Irving Medical Center found that binge drinking impairs working memory in the adolescent brain. The study, in mice, explains why teenagers who binge drink are 15 times more ...

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.