Rain or Shine? Computer Models How Brain Cells Reach a Decision

December 14, 2009,

(PhysOrg.com) -- Yale University researchers have devised a computer model to explain how the brain makes decisions based on statistical probabilities-as, for instance, when a doctor makes a diagnosis based on several conflicting test results.

Yale University researchers have devised a to explain how the brain makes decisions based on statistical probabilities—as, for instance, when a doctor makes a diagnosis based on several conflicting test results.

In a study published online December 13 in the journal , Xiao-Jing Wang, professor of neurobiology at Yale School of Medicine and at the Kavli Institute of Neuroscience, proposes that synapses—the connections between neurons—are capable of computing probabilities from observed cues in order to make a statistical inference.

“We often need to make probabilistic inference—like deducing which of the numerous foods we ate made us sick, reaching a medical diagnosis based on symptoms and test results, or deciding whether it will rain or shine given a few pieces of information about the atmosphere,” Wang said. “Such decisions are based on the calculus of chance or the statistical theory of prediction.”

With his former postdoctoral associate Alireza Soltani, now at the California Institute of Technology, Wang built computer models of neural circuits to investigate how such probabilistic decisions are carried out in the brain. The model explains a phenomenon called “base rate neglect” observed in humans. Base rate neglect roughly means that a piece of information (for example, a test result that shows a spot on the lung) that is equally predictive of two possible outcomes (I have cancer or I do not have cancer) is perceived by people to be more predictive for the one that is less probable (I have cancer).

“What's interesting is that such complicated probabilistic computations and psychological phenomena can now be studied, perhaps explained, in terms of the neural computation in the brain,” Wang said.

Provided by Yale University (news : web)

Related Stories

Recommended for you

Therapeutic antibodies protected nerve–muscle connections in a mouse model of Lou Gehrig's disease

February 20, 2018
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, causes lethal respiratory paralysis within several years of diagnosis. There are no effective treatments to slow or halt this devastating disease. Mouse ...

Brain liquefaction after stroke is toxic to surviving brain: study

February 20, 2018
Scientists have known for years that the brain liquefies after a stroke. If cut off from blood and oxygen for a long enough period, a portion of the brain will die, slowly morphing from a hard, rubbery substance into liquid ...

Brain immune system is key to recovery from motor neuron degeneration

February 20, 2018
The selective demise of motor neurons is the hallmark of Lou Gehrig's disease, also known as amyotrophic lateral sclerosis (ALS). Yet neurologists have suspected there are other types of brain cells involved in the progression ...

Every experience that the brain perceives is unique

February 20, 2018
Neuronal activity in the prefrontal cortex represents every experience as "novel." The neurons adapt their activity accordingly, even if the new experience is very similar to a previous one. That is the main finding of a ...

Brain aging may begin earlier than expected

February 20, 2018
Physicists have devised a new method of investigating brain function, opening a new frontier in the diagnoses of neurodegenerative and ageing related diseases.

Electrical implant reduces 'invisible' symptoms of man's spinal cord injury

February 19, 2018
An experimental treatment that sends electrical currents through the spinal cord has improved "invisible" yet debilitating side effects for a B.C. man with a spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.