Surplus of serotonin receptors may explain failure of antidepressants in some patients

January 13, 2010

An excess of one type of serotonin receptor in the center of the brain may explain why antidepressants fail to relieve symptoms of depression for 50 percent of patients, a new study from researchers at Columbia University Medical Center shows.

The study is the first to find a causal link between receptor number and antidepressant treatment and may lead to more personalized treatment for , including treatments for patients who do not respond to and ways to identify these patients before they undergo costly, and ultimately, futile therapies.

The research, led by Rene Hen, PhD, professor of pharmacology in the Departments of Psychiatry and at Columbia University, and a researcher the New York State Psychiatric Institute, appears in the January 15 issue of the journal Neuron.

Most antidepressants - including the popular SSRIs - work by increasing the amount of serotonin made by cells -- called raphe -- deep in the middle of the brain. Serotonin relieves symptoms of depression when it is shipped to other brain regions.

But too many serotonin receptors of the 1A type on the raphe neurons sets up a negative feedback loop that reduces the production of serotonin, Dr. Hen and his colleagues discovered

"The more antidepressants try to increase serotonin production, the less serotonin the neurons actually produce, and behavior in mice does not change," Dr. Hen says.

Dr. Hen and his colleagues measured the effect of antidepressants with a commonly used behavioral test that measures the boldness in mice when retrieving food from bright open areas. Mice on antidepressants usually become more daring, but the drugs had no such effect on mice with surplus serotonin receptors.

Recent genetic and imaging studies of depressed patients have suggested that high receptor numbers of the 1A type in the raphe neurons are associated with treatment failure. Until now, no direct test of the association could be performed because the number of receptors in the raphe neurons could not be altered without changing the number of receptors in other parts of the brain.

Using new techniques in genetic engineering, Dr. Hen created a strain of mouse that can be programmed to produce high or low levels of serotonin receptors of the 1A type only in the raphe neuron. The levels present in the mimicked the levels found in people who are resistant to antidepressant treatment.

"By simply tweaking the number of receptors down, we were able to transform a non-responder into a responder," Dr. Hen adds.

That strategy also may work for patients resistant to antidepressant treatment, Dr. Hen says, if drugs can be found to reduce the number of receptors or impede their activity.

But first the role of surplus serotonin receptors in people must be confirmed. Dr. Hen's lab is now looking at patients enrolled in clinical trials to see if receptor levels predict response to antidepressants.

Related Stories

Recommended for you

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

Theory: Flexibility is at the heart of human intelligence

November 19, 2017
Centuries of study have yielded many theories about how the brain gives rise to human intelligence. Some neuroscientists think intelligence springs from a single region or neural network. Others argue that metabolism or the ...

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.