Newly engineered enzyme is a powerful staph antibiotic

February 8, 2010

(PhysOrg.com) -- In the past decade, methicillin-resistant Staphylococcus aureus, or MRSA, has ushered in a new era in the fight between man and bug. By harnessing the power of nature’s own antibiotics, scientists have engineered an enzyme known as a lysin that not only kills MRSA in mice but also works synergistically with antibiotics that were once powerless against the formidable organism.

With their best chemical antibiotics slowly failing, scientists are increasingly looking to nature for a way to control deadly staph — the culprit behind most hospital infections. Naturally toxic for bacteria, enzymes called lysins have the promising ability to obliterate staph, but the problem is producing large enough quantities of them to study how they work. Rockefeller University scientists have now overcome this barrier by engineering a lysin that not only kills multidrug-resistant () in mice, but also works synergistically with traditional antibiotics that have long been shelved due to resistance.

For the past five years, Vincent A. Fischetti, head of the Laboratory of Bacterial Pathogenesis and Immunology, and his colleagues have tried to clone a lysin that specifically targets staph, but they always ran into the same problem. Although hundreds of thousands of lysins could be expressed in an engineered cell, they all would stick together forming an insoluble clump, rendering them inactive. “They were useless; a real thorn in our side,” says Fischetti. “We’ve come across some problems cloning lysins for other bacteria, such as strep, but nothing to this extent.”

Lysins, proteins derived from the viruses that have been infecting bacteria for billions of years, have two basic components. One acts as a recognition system to identify the specific bacteria species it has evolved to target; the other works like a molecular power drill that bores holes through the bacterium’s cell wall, killing the organism. Together, these two components work so quickly and so efficiently that bacteria have no time to develop resistance.

To develop a functional lysin, Fischetti’s team, including Anu Daniel and Chad Euler, a former postdoc and a senior graduate fellow in the lab, respectively, took advantage of the modular nature of lysins. In a series of progressive and logical steps, the team mixed and matched the two segments from 20 to 25 different staph-specific lysins until they created a chimera that, when expressed in sufficient numbers, didn’t stick together. They then tested the chimeric lysin — named chimeric lysin for staphylococci, or ClyS — to see if it would behave like one that had evolved in nature.

“It’s as if this chimeric lysin evolved on its own,” says Fischetti. “It resists neutralization by antibodies that treat it as a foreign invader and it is highly, highly effective.”

By combining nature’s forces with technological power, Fischetti and his team have not only come up with an alternative way to defeat MRSA but have potentially breathed new life into drugs that are no longer effective against the organism. Used alone, ClyS is able to kill all staph species, including strains of MRSA, in both culture and in mice. But the researchers also found that when using ClyS together with the antibiotic oxacillin (an antibiotic to which MRSA is resistant), the synergistic effect allowed them to administer both in very low doses, allowing a previously shelved and inexpensive antibiotic to be used again.

“This work came out of sheer persistence and hard, tedious work,” says Fischetti. “But it also speaks to the power of nature and technology working together to help us win this battle of antibiotic resistance.”

More information: Antimicrobial Agents and Chemotherapy online: January 19, 2010. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus, Anu Daniel, Chad Euler, Mattias Collin, Peter Chahales, Kenneth Gorelick and Vincent A. Fischetti

Related Stories

Recommended for you

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

Engineering the gut microbiome with 'good' bacteria may help treat Crohn's disease

November 15, 2017
Penn Medicine researchers have singled out a bacterial enzyme behind an imbalance in the gut microbiome linked to Crohn's disease. The new study, published online this week in Science Translational Medicine, suggests that ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

ain
not rated yet Feb 10, 2010
Hope this works, with the ever increasing cases of staph infections

http://www.staphi...ons.info
mrsa
not rated yet Mar 14, 2010
Staph Infections and MRSA can be very serious and cause horrible damage to your body. Check out some of these pictures: http://www.staph-...ures.com

I'm glad to see that they are making progress on finding a solution to this type of infection.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.