4-D software helps adjust for breathing when treating lung cancer with radiotherapy

April 30, 2010, European Society for Medical Oncology

A new 4-dimensional software program promises to improve the treatment of lung cancer by allowing doctors to take the movement of breathing into account when administering radiotherapy, researchers announced today at the 2nd European Lung Cancer Conference in Geneva, Switzerland.

Some shift their position as patients inhale and exhale. The amount of movement depends on where they are in the lung. For example, lesions in the lower lobes may move up to 4 cm.

This movement poses a challenge for doctors treating the cancer with radiotherapy. If they use too small an irradiation field, the tumor can move so far that it is missed by the treatment. To avoid this, standard radiotherapy uses large radiation fields to take into account the respiratory movements, but in doing so can damage large areas of healthy lung tissue.

A newer approach, called 'breathing-adapted radiotherapy' (BART) allows doctors to reduce the amount of radiation delivered, and improve the chance of hitting the tumor, by timing delivery to a particular moment of the respiratory cycle.

"One of the main problems with BART is how to choose the optimal respiratory phase in which to treat the patient," explains Dr Nicolas Peguret from Hôpitau Universitaires de Genčve. "This phase is basically unknown and may be in deep inspiration, in expiration or even in a third respiratory phase somewhere between. It may vary from one patient to another because of the variation in tumor localization and in movements of the tumor and of other nearby organs."

Dr Peguret and colleagues have developed software which allows doctors to determine a moment during the respiratory cycle with an optimal tumor position for radiotherapy. "By applying this software together with BART, it may be possible not only to reduce the radiation fields but also to adapt the radiation volume taking into account the varying positions of the tumor and the organs at risk."

The technique involves two steps: first, for each patient, a 4-dimensional computed tomography (4D CT) scan is performed, recording a set of CT slices for each of 10 respiratory phases. This technique is already well known in the medical world, particularly in the field of cardiology.

Second, the new software helps the radiation oncologist to determine if there is a respiratory phase that is most convenient for radiotherapy, based on criteria that have been established by a panel of oncologists.

"The software doesn't require any special equipment and doesn't cause any additional cost," Dr Peguret said. "However, it is important to have a 4D CT available to be able to acquire synchronized image sets, as well as a system that allows synchronization of the thoracic movements during radiotherapy."

"The software will never replace the radiation oncologist," he added. "It simply provides the doctor with information about the movement of the tumor. Depending on the oncologist's clinical objectives, he or she will choose the optimal phase for radiotherapy in an individual patient. In this way, our software transforms the information provided by 4D CT into a real benefit for the patient."

At the conference, Dr Peguret will report that the system may help to increase the dose to the target. "Local control and overall survival depend on the radiation dose that can be delivered to the with a relative sparing of the organs at risk," he said.

"To our knowledge, there is no other similar software on the market. 4D CT and the techniques of BART are still underutilized in oncology. This work might allow its dispersion to other centers with the ultimate aim of improving the survival of the patients."

A Phase II clinical trial is currently underway and results are expected early in 2011.

Related Stories

Recommended for you

Researchers discover novel mechanism linking changes in mitochondria to cancer cell death

February 20, 2018
To stop the spread of cancer, cancer cells must die. Unfortunately, many types of cancer cells seem to use innate mechanisms that block cancer cell death, therefore allowing the cancer to metastasize. While seeking to further ...

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018
Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

Induced pluripotent stem cells could serve as cancer vaccine, researchers say

February 15, 2018
Induced pluripotent stem cells, or iPS cells, are a keystone of regenerative medicine. Outside the body, they can be coaxed to become many different types of cells and tissues that can help repair damage due to trauma or ...

Team paves the way to the use of immunotherapy to treat aggressive colon tumors

February 15, 2018
In a short space of time, immunotherapy against cancer cells has become a powerful approach to treat cancers such as melanoma and lung cancer. However, to date, most colon tumours appeared to be unresponsive to this kind ...

Can our genes help predict how women respond to ovarian cancer treatment?

February 15, 2018
Research has identified gene variants that play a significant role in how women with ovarian cancer process chemotherapy.

First comparison of common breast cancer tests finds varied accuracy of predictions

February 15, 2018
Commercially-available prognostic breast cancer tests show significant variation in their abilities to predict disease recurrence, according to a study led by Queen Mary University of London of nearly 800 postmenopausal women.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.