In India, 1 in 25 people have gene that causes heart failure

June 8, 2010, Loyola University Health System
Sakthivel Sadayappan, Ph.D., of Loyola University Health System, studies a gene mutation in south Asian populations that causes heart failure. Credit: Loyola University Health System

One in 25 people from India and other south Asian countries carries a mutated gene that causes heart failure.

Studying this gene, and the protein it encodes, could lead to new treatments for heart failure, Loyola University Health System researcher Sakthivel Sadayappan, PhD, wrote in a recent review article in the Journal of Molecular and Cellular Cardiology. Sadayappan has studied the gene and protein for 15 years.

Investigating the protein could provide "a better understanding of the mechanics of during health and disease," Sadayappan and first author David Barefield wrote. Barefield is a graduate student and Sadayappan is an assistant professor in the Department of Cell and Molecular Physiology at Loyola University Chicago Stritch School of Medicine.

Previous studies by Sadayappan and other researchers found that about 4 percent of people who live in India, Pakistan, Sri Lanka, Indonesia and Malaysia carry the mutation. Carriers have about a 90 percent chance of developing heart failure after age 45.

About 60 million people worldwide, including about 40 million Indians, carry the mutation. (Sadayappan, who is from India, is not a carrier.) Sadayappan said the mutation likely arose in a single person roughly 33,000 years ago, and spread throughout south Asia.

The gene encodes for a protein, called cardiac myosin binding protein-C (cMyBP-C), that is critical for the normal functioning of the heart. In the mutated gene, 25 base pairs (DNA letters) are missing. As a result, the tail end of the protein is altered. Due to this modification, the protein is not properly incorporated into the functioning unit of called sarcomere. Consequently, the heart does not contract properly.

In younger carriers, the heart can compensate for this defect. But as the person ages, his or her heart is no longer able to compensate. becomes inflamed and does not work well, a condition called cardiomyopathy. The most common manifestation of cardiomyopathy is heart failure -- the heart can't pump enough blood to the rest of the body.

There is no current treatment to prevent heart failure in people who carry the mutated gene. However, a heart-healthy diet and exercise can delay the onset of heart failure, and heart failure drugs can manage symptoms.

Sadayappan said stem cell therapy could be a possible treatment. Stem cells would be taken from a patient's heart, genetically engineered to replace the mutated gene with a healthy gene, and then injected back in the patient's heart. But such stem cell therapy has not been tested. Nor is there a commercial test for the gene, Sadayappan said.

But Sadayappan and other scientists are actively researching how cMyBP-C functions. And improved understanding of this crucial protein, Sadayappan said, could lead to new drugs to treat heart failure.

Next year is the 40th anniversary of the discovery of cMyBP-C, and scientists still have much to learn about the function of this protein in the heart. Sadayappan's lab is helping lead the way by investigating the cardiomyopathy disease mechanism that could lead to new therapies to improve muscle function in patients. His long-term goal is to continue his cutting edge laboratory research to delineate the role of cMyBP-C function in the heart.

Related Stories

Recommended for you

Variants in non-coding DNA contribute to inherited autism risk

April 19, 2018
In recent years, researchers have firmly established that gene mutations appearing for the first time, called de novo mutations, contribute to approximately one-third of cases of autism spectrum disorder (ASD). In a new study, ...

Researchers discover link between gene variation and language

April 18, 2018
What shapes the basic features of a language?

Natural selection still at work in humans

April 18, 2018
Evolution has shaped the human race, with University of Queensland researchers finding signatures of natural selection in the genome that influence traits associated with fertility and heart function.

Gene therapy for beta-thalassemia safe, effective in people

April 18, 2018
In a powerful example of bench-to-bedside science showing how observations made in the lab can spark life-altering therapies in clinic, an international team of clinician-investigators has announced that gene therapy for ...

Potential lines of attack against prostate cancer

April 17, 2018
Researchers from The University of East Anglia (UEA) have contributed to the world's largest study into genes that drive prostate cancer – identifying 80 molecular weaknesses that could be targeted by drugs to treat the ...

Epstein-Barr virus linked to seven serious diseases

April 16, 2018
A far-reaching study conducted by scientists at Cincinnati Children's reports that the Epstein-Barr virus (EBV)—best known for causing mononucleosis—also increases the risks for some people of developing seven other major ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.