Insight into structure of HIV protein could aid drug design

June 9, 2010
A University of Iowa and University of Nebraska study has revealed the structure of an important HIV protein attached to the human protein that the virus hijacks during infection. The structural information might help researchers develop drugs that disrupt HIV replication. Image shows structure of HIV Tat protein (red) bound to human P-TEFb protein (beige and green) superimposed on artist’s rendition of HIV viruses. Credit: Tahir Tahirov, University of Nebraska Medical Center, and Narmin Tahirova, University of Nebraska at Lincoln.

Researchers at the University of Iowa Carver College of Medicine and University of Nebraska Medical Center (UNMC) have created a three-dimensional picture of an important protein that is involved in how HIV -- the virus responsible for AIDS -- is produced inside human cells. The picture may help researchers design drugs that can prevent HIV from reproducing.

The research team, led by David Price, Ph.D., UI professor of biochemistry, and Tahir Tahirov, Ph.D., professor of structural biology at the Eppley Institute at UNMC, combined expertise in protein chemistry and X-ray crystallography -- a technique for observing protein structures -- to produce the first crystal structure of the called Tat. The structure shows Tat attached to the human protein (P-TEFb) that the virus hijacks during infection.

The structure shows how Tat latches on to this particular human protein and how the interaction alters the shape of the human protein. The study is published in the June 10 issue of the journal Nature.

"We have solved the long sought-after structure of an important HIV protein," Price said. "Now that we know the details of the interaction between Tat and P-TEFb, it may be possible to design inhibitors that target P-TEFb only when it is interacting with Tat."

This distinction is important because although inhibiting P-TEFb blocks replication of the HIV virus, P-TEFb is a vital protein in human cells and inhibiting it kills cells. If an inhibitor could be designed that distinguishes between the P-TEFb attached to Tat and the form that is normal in , that drug might target without harming normal cell function.

Such compounds could be useful in combination with existing anti-HIV drugs to further reduce viral levels in HIV-infected individuals.

In addition, drugs that target P-TEFb may also be useful in treating drug-resistant HIV, which is a growing problem. The mutates very easily and can develop resistance to current drug that target viral proteins. Targeting a human protein like P-TEFb that the virus needs but cannot mutate may be a successful strategy to counter drug-resistant .

Related Stories

Recommended for you

Study suggests a way to stop HIV in its tracks

December 1, 2017
When HIV-1 infects an immune cell, the virus travels to the nucleus so quickly there's not enough time to set off the cell's alarm system.

Discovery puts the brakes on HIV's ability to infect

November 30, 2017
Viewed with a microscope, the virus faintly resembles a pineapple—the universal symbol of welcome. But HIV, the virus that causes AIDS, is anything but that. It has claimed the lives of more than 35 million people so far.

Rising levels of HIV drug resistance

November 30, 2017
HIV drug resistance is approaching and exceeding 10% in people living with HIV who are about to initiate or reinitiate first-line antiretroviral therapy, according to the largest meta-analysis to date on HIV drug resistance, ...

Male circumcision and antiviral drugs appear to sharply reduce HIV infection rate

November 29, 2017
A steep drop in the local incidence of new HIV infections accompanied the rollout of a U.S.-funded anti-HIV program in a large East-African population, according to a study led by researchers at Johns Hopkins Bloomberg School ...

Combination HIV prevention reduces new infections by 42 percent in Ugandan district

November 29, 2017
A study published today in the New England Journal of Medicine provides real-world evidence that implementing a combination of proven HIV prevention measures across communities can substantially reduce new HIV infections ...

Research on HIV viral load urges updates to WHO therapy guidelines

November 24, 2017
A large cohort study in South Africa has revealed that that low-level viraemia (LLV) in HIV-positive patients who are receiving antiretroviral treatment (ART) is an important risk factor for treatment failure.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.