'Quake' reveals how eyes and ears keep us balanced

June 29, 2010, Australian National University
Photo: Michele Catania/Flickr

(PhysOrg.com) -- An earthquake machine has been used by vision scientists to confirm that instead of working in isolation, our visual and middle-ear systems work together, to give us an improved sense of balance.

The Earthquake machine at Questacon, the National Science and Technology Centre, has been used in groundbreaking research by vision scientists to confirm that instead of working in isolation, our visual and middle-ear systems work together, to give us an improved sense of balance.

Led by Dr Mark Edwards and Dr Michael Ibbotson, chief investigators in The Vision Centre and researchers at the Australian National University, this research has opened up various opportunities to future research, including potentially developing ways to reduce motion sickness, a phenomenon that affects millions of people.

“When we move through the world two sensory systems are activated: our visual and vestibular (or middle ear) systems,” Dr Edwards explains.

“The images on our eyes undergo complex patterns of motion, called optic-flow patterns, that indicate the type of movement we are making, e.g. radially expanding patterns indicate forward motion, and contracting patterns backward motion.”

“The consists of fluid-filled channels in our and it responds to the inertial forces produced by changes in our speed or direction of movement.”

The parental anecdotes of having children close their eyes when they are affected by motion sickness, hence removing , seems to suggest a functional interaction between these two systems.

In a unique experiment using equipment that has enthralled thousands of visitors to Questacon, young and old, Dr Edwards and Dr Ibbotson have demonstrated both our visual and vestibular systems are far more closely interconnected than was previously thought.

“The sense of balance comes from both our sight and vestibular system working in combination, but it has never been previously demonstrated that the two are functionally connected in humans,” Dr Edwards says.

The research was conducted using a most unusual piece of research equipment, the Earthquake machine, which simulates the effect of an earthquake. Using it, the research team was able to measure the sensitivity of volunteers to optic-flow patterns when they were physically moved in a direction that was either consistent or inconsistent with that pattern being received by the eyes. For example, sensitivity to a radially-expanding pattern when they were moved either forwards (consistent) or backwards (inconsistent).

“We predicted that if the visual and optic-flow systems were functionally linked, then sensitivity to motion would be greater when the two signals were consistent, and the two signals could facilitate each other, compared to when they were inconsistent. This is the pattern of results we obtained.”

The ability of the visual system and the inner ear to work together would be of greatest importance under conditions where both signals are relatively weak, for example, when produced by body sway while maintaining balance. It may also be of importance in dealing with effects such as .

The team is also considering the possibility that this crosstalk between the senses is different for each individual, depending upon their need to maintain balance. A next step is to find out how these systems actually talk to each other so we can fine tune our ability to maintain balance.

Related Stories

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.