Genetic variation in key cell pumping mechanism reduces effects of clopidogrel treatment

August 29, 2010, Lancet

A study published Online First and in an upcoming Lancet shows that patients with a genetic variation affecting a key protein pump in drug transport do not respond as well to the anticlotting drug clopidogrel—as such, patients with this variation at are at increased risk of cardiovascular events with standard clopidogrel treatment. However, no association exists between this genetic variation and another anticlotting drug, prasugrel.

This, and other work on a separate genetic variation, shows that more than half the population have a genetic profile making them less amenable to clopidogrel treatment, and the authors of this new work say such profiling should be considered when looking at anticlotting regimens in patients requiring anticlotting treatment. The Article is by Dr Jessica Mega, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA, and colleagues.

Both clopidogrel and prasugel are prodrugs, meaning that they are metabolically activated once inside the body. Both are used to prevent forming in patients with coronary artery diseases, peripheral vascular disease, and cerebrovascular disease.

Previous work has already identified CYP2C19 as another affecting clopidogrel (but not prasugrel) metabolism. In this case, patients with the variation in CYP2C19 have inadequate clopidogrel activation (but not prasugrel). In this study, Mega and co-workers look at another part in the chain vital for drug absorption: ABCB1 is a gene that encodes P-glycoprotein, a protein pump which transports molecules across cell membranes. The pump is found, among other places, on the epithelial cells lining the gut wall. The researchers aimed to discover whether variation in the ABCB1 gene caused further problems in clopidogrel metabolism, in addition to those caused by CYP2C19. They looked at the population studied in the TRITON-TIMI 38 trial published in 2007 (which compared clopidogrel and prasugrel treatment in patients with acute coronary syndromes) as the basis for their analysis. The primary endpoint in this study was cardiovascular death, heart attack, or stroke.

Participants in TRITON-TIMI 38 had three possible variants for ABCB1 3435C--T: TT, CT, and CC (C=cystosine and T=thymine, both building blocks of DNA). The researchers showed that patients on clopidogrel with the TT variation had a 72% increased risk of hitting the primary endpoint compared with CT/CC collectively. No association was recorded with prasugrel and ABCB1 variation. The authors speculate that prasugrel is metabolised more rapidly, mitigating the effects of the variation.

The authors also showed that the ABCB1 and CYP2C19 variations have separate but complementary effects on the response to clopidgrel. Collectively, patients with either variation or both were twice as likely to hit the primary end point as those with neither. The authors say: "When both ABCB1 and CYP2C19 were taken into account, in this population following an acute coronary syndrome and percutaneous coronary intervention, nearly half the population carried a genotype associated with increased risk of major adverse events during treatment with standard doses of ."

They conclude: "As clinicians, professional societies, and patients integrate information about genetic factors affecting the response to these drugs, the roles of both ABCB1 and CYP2C19 should be considered."

In a linked Comment covering both the Wallentin and Mega genetics papers, Dr Betti Giusti and Dr Rosanna Abbate, University of Florence-Careggi Hospital, Florence, Italy, say: "The issue is not to choose the lesser of the evils, but the better of the goods—by identifying the therapeutic strategy that, in consideration of individual characteristics, warrants the higher benefit/risk ratio."

They conclude: "Prospective studies evaluating different antiplatelet treatments tailored to individual characteristics of patients—genetic profile, residual platelet reactivity, drug-drug interactions, and traditional and procedural risk factors—are urgently needed to identify therapeutic strategies that will provide the best benefit for the single patient in this high-risk clinical setting."

More information: … (10)61274-3/abstract

Related Stories

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.