Researchers discover key protein involved in DNA repair

August 23, 2010, University of Toronto

In a groundbreaking study, University of Toronto researchers including Professors Daniel Durocher, Anne-Claude Gingras and Frank Sicheri have uncovered a protein called OTUB1 that blocks DNA damage in the cell -- a discovery that may lead to the development of strategies to improve some cancer therapies.

Lead author Durocher, a senior investigator at Mount Sinai Hospital’s Samuel Lunenfeld Research Institute and the Thomas Kierans Research Chair in Mechanisms of Cancer Development, as well as colleagues at U of T, Mount Sinai Hospital and the Keio University in Japan, have revealed pivotal new information on how cells regulate their genetic material. In addition, the discovery improves understanding of familial breast and , as the research shows that OTUB1 inhibits the action of BRCA1, a DNA repair protein often mutated in these cancers.

“In recent years, we have been very good at finding proteins necessary for DNA repair,” said Durocher. “What we did not appreciate was that gatekeepers existed to inhibit the capacity of the cell to repair DNA. The obvious question now is: Can we enhance the ability of the cell to repair DNA by blocking OTUB1?”

The findings were reported in the August 19 issue of the prestigious international journal Nature, in which only one or two high‐impact papers are published weekly. The researchers identified OTUB1 using (or RNAi), an approach that helps scientists determine the functions of proteins and genes. After exposing cells to radiation, Durocher and his team used RNAi to discover that OTUB1 inhibits a cell's , through its role in a process known as ubiquination.

Ubiquitins are small regulatory proteins in cells. The addition of many ubiquitins onto a target
protein can act as a ‘mayday’ signal at the site of DNA damage, attracting repair mechanisms to fix the damage. Durocher’s team found that OTUB1 mutes the mayday signal by preventing the addition of ubiquitin units.

“Perhaps the biggest surprise was that OTUB1 works by an entirely new and elegant mechanism,” said Durocher. “Mutations in genes that repair our DNA can lead to cancer, infertility and immune deficiency. Therefore, inhibiting the proteins that block DNA repair could lead to new types of therapeutics for these diseases.”

For example, Durocher explained that by inhibiting OTUB1, healthy cells may be better able to withstand cancer treatment with radiation and certain chemotherapy medications such as doxorubicin. As well, inhibiting OTUB1 may lead to treatments for genetic immunodeficiency disorders such as RIDDLE syndrome, in which cells lose their ability to repair .

The study was supported by the Canadian Institutes of Health Research.

Related Stories

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

DNA gets away: Scientists catch the rogue molecule that can trigger autoimmunity

February 22, 2018
A research team has discovered the process - and filmed the actual moment - that can change the body's response to a dying cell. Importantly, what they call the 'Great Escape' moment may one day prove to be the crucial trigger ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

kevinrtrs
1 / 5 (4) Aug 24, 2010
in which cells lose their ability to repair DNA damage.

Now this seems mightily strange - if mutations are the food of evolution, why does the cell have strong mechanisms in place to prevent such mutations from occurring? Surely if evolutionary theory is correct then mutations should be occurring quite freely and at a very fast rate in order to generate the incredible information required to develop new limbs, muscle, shapes, connections and know-how to use those new items?

Why would evolution be blocking it's own progress by putting the brakes on mutations? Just doesn't make any sense.
Skeptic_Heretic
not rated yet Aug 24, 2010
Now this seems mightily strange - if mutations are the food of evolution, why does the cell have strong mechanisms in place to prevent such mutations from occurring? Surely if evolutionary theory is correct then mutations should be occurring quite freely and at a very fast rate in order to generate the incredible information required to develop new limbs, muscle, shapes, connections and know-how to use those new items?

You don't even read the articles, do you?

as the research shows that OTUB1 inhibits the action of BRCA1, a DNA repair protein often mutated in these cancers.
OTUB1 is responsible for blocking the repair proteins, it is not a repair protein. It also provides some potential benefit in averting cancers.
Why would evolution be blocking it's own progress by putting the brakes on mutations? Just doesn't make any sense

This appears to be an evolution away from particular types of cancer as predicted by evolutionary theory. Not strange in the least.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.