Mount Sinai pioneers new cardiac imaging device

August 16, 2010

Researchers from Mount Sinai School of Medicine have for the first time developed a way to visualize coronary artery plaques vulnerable to rupture using multi-color computed tomography (CT), an innovation that will lead to better and earlier diagnosis of cardiovascular disease. The data are published in the September issue of Radiology.

Ruptures of are the cause of nearly 70 percent of heart attacks. High density lipoproteins (HDL), the "good" cholesterol, are drawn to plaques vulnerable to rupture and remove them from the arterial wall. The Mount Sinai team harnessed HDL by encapsulating tiny gold particles within it and injected them into mice. By using a sophisticated multi-color CT scanner, the researchers were able to see the gold particles as the HDL was targeting macrophages, or the cells that cause inflammation in the arterial wall, therefore illuminating the location of the vulnerable plaques.

"The use of multi-color CT and gold nanoparticles to visualize plaque will revolutionize ," said the research team leader, Zahi A. Fayad, PhD, Professor of Radiology and Medicine and the Director of the Translational and Institute at Mount Sinai School of Medicine. "The acquisition of this technology and development of this method will help us improve cardiovascular disease diagnosis in our patients, furthering our commitment to translational research. We look forward to continuing our study of this technology in the clinical setting."

Conventional CT detectors provide a gray image of the artery being studied, and do not provide contrast to differentiate types and density of tissue. In addition to showing the impact of the gold particles, spectral CT can simultaneously distinguish calcium deposits and contrast agents used such as iodine, which is often used to identify stenoses, or the narrowing of arteries, informing the severity of atherosclerosis and . Mount Sinai is the first institution in the world to use this scanner, made by Phillips Medical Systems, in a pre-clinical setting.

"There is a significant unmet need for imaging technology that visualizes plaque vulnerable to rupture," said the lead author of the work, David Cormode, PhD, Postdoctoral Fellow, Translational and Molecular Imaging Institute, Mount Sinai School of Medicine. "The fact that the multi-color CT technique shows the , iodine and calcifications, provides us with a more complete picture of the nature of the atherosclerotic arteries."

Multi-color CT technology may also be beneficial in imaging other biological process and diseases, including cancer, kidney disease, and bowel diseases. The Mount Sinai team plans to continue studying the new scanner in additional animal studies and in humans.

"Mount Sinai has a decades-long history of making advances in cardiac imaging that have had a significant impact on the field and in patient care," said Valentin Fuster, MD, PhD, Director of Mount Sinai Heart, the Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, The Mount Sinai Medical Center. "As the first center in the world to pioneer this imaging method, we are leading the charge once more in improving diagnostic tools that lessen the potentially devastating impact of heart disease."

Related Stories

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.