Researcher discovers new 'anti-pathogenic' drugs to treat MRSA

September 16, 2010

Menachem Shoham, PhD, associate professor and researcher in the department of biochemistry at the Case Western Reserve University School of Medicine, has identified new anti-pathogenic drugs that, without killing the bacteria, render Methicillin Resistant Staphylococcus Aureus (MRSA) harmless by preventing the production of toxins that cause disease.

Infections of MRSA are a growing public health problem causing 20,000 deaths per year in the U.S. alone. MRSA is the most prevalent in hospital settings and in the community at large. The problem has become increasingly severe due to the fact that the bacteria develop resistance to antibiotics. Currently, there are only two antibiotics available to treat MRSA ( and linezolid) and strains are emerging that are resistant even to these two remaining antibiotics. As result, healthcare providers are running out of options to treat patients suffering from antibiotic-resistant infections, creating a dire need for alternative treatments and approaches.

" are ubiquitous and normally do not cause infections, however, occasionally these bacteria become harmful due to their secretion of toxins," said Dr. Shoham. "We have discovered potential "anti-pathogenic" drugs that block the production of toxins, thus rendering the bacteria harmless. Contrary to antibiotics, these new anti-pathogenic drugs do not kill the bacteria. And since the survival of the bacteria is not threatened by this approach, the development of resistance, like that to antibiotics, is not anticipated to be a serious problem."

Dr. Shoham identified a bacterial protein, known as AgrA, as the key molecule responsible for the release of toxins. AgrA, however, needs to be activated to induce toxin production. His goal was to block the activation of AgrA with a drug, thus preventing the cascade of toxin release into the blood that can lead to serious infections throughout the body.

The screening for AgrA inhibitors was initially carried out in a computer by docking a library of 90,000 compounds and finding out which compounds would fit best into the activation site on AgrA. Subsequently, about one hundred of the best scoring compounds were acquired and tested in the laboratory for inhibition of the production of a toxin that ruptures red blood cells.

Seven of these compounds were found to be active. Testing compounds bearing chemical similarity to the original compounds lead to the discovery of additional and more potent compounds.

More than a dozen active compounds have been discovered by this method. The best drug candidate reduces red blood cell rupture to 12% of the value without the drug at a concentration of 10 µg/mL, without affecting bacterial growth..

"It is possible to inhibit virulence of MRSA without killing the ," continued Dr. Shoham. "Such anti-pathogenic drugs may be used for prophylaxis or therapy by themselves or in combination with an antibiotic."

This research was carried out in the laboratory of Dr. Menachem Shoham in the Department of Biochemistry at the Case Western Reserve University School of Medicine in Cleveland, Ohio. Funding was provided by grants from the Steris Corporation and from the American Heart Association.

The results were presented at the 50th Interscience Conference on Antimicrobial Agents and Chemotherapy, Boston Conference Center earlier this week.

Related Stories

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.