Space-age device to deliver more efficient health care on Earth and above

September 22, 2010

On an exploration mission, an astronaut has an accident and appears to have serious injuries as the spacecraft speeds to its destination. The ensuing scene is hectic as the other crew members try to get a grasp on the situation and provide appropriate treatment. Efficient use of time and resources may be the difference between life and death.

Engineers funded by the National Space Biomedical Research Institute (NSBRI) are developing a system that will provide an accurate patient history, assist in treatment, and help astronauts be more efficient when providing medical care. Even though the integrated system is being developed for use in space, it can be used in many different locations, such as the emergency room, on the battlefield or at an accident scene.

The project, led by NSBRI Smart Medical Systems and Technology Team member John Crossin, is combining two existing technologies -- the iRevive medical record software and the Lightweight Trauma Module (LTM) monitoring and therapeutic care system. The easy-to-use, integrated LTM/iRevive system will be a tool for providing medical care to astronauts during long-duration spaceflights, especially since a quick return to Earth will not be possible.

"The integrated system creates a medical record for vital sign readings and observational data," said Crossin, president of 10Blade, Inc., in Plymouth, Mass. "It will collect, monitor and fuse patient care information with physiological patient data and optimize remote medical diagnosis, ventilator support, intravenous (IV) fluid therapy and treatment options."

The LTM, a briefcase-sized device developed by Impact Instrumentation in West Caldwell, N.J., measures vital signs, such as pulse and blood oxygenation, and serves as a ventilator with integrated control systems. The iRevive software, developed by 10Blade, automatically records vital sign data from the LTM and allows the addition of observational data into the patient record. The software, which can run on multiple platforms, will guide caregivers through the observational recording process. The LTM/iRevive system's record-keeping capabilities will improve patient care in both short- and long-term situations.

"The person providing care after an accident is trying to keep the patient alive," Crossin said. "Some of the records can be confusing, lost or not include the time a treatment or an observation occurred. A system that automatically records data will reduce errors and the time needed to look up information. This allows a greater focus on providing care. Also, over time, the system allows you to see trends in the captured data."

The combined system is easy to use. "Generally, the initial emergency care and recording is administered by people who do not have as much training as a doctor," Crossin said. "We are making an intuitive, easy-to-use system that requires little medical training to understand and use."

Another benefit of the system is the ability to transmit LTM/iRevive system data to flight surgeons in Mission Control with one keystroke. The instant access to current and historical data will give flight surgeons the ability to quickly assess the situation and provide guidance to the crew. This feature will also be beneficial to health care providers in rural clinics or emergency personnel at an accident scene.

The combined system will also be a great tool for managing limited resources on a spacecraft and in other settings. For example, the system could help medical personnel determine how much oxygen is needed for critically wounded patients being air-lifted out of a war zone to a hospital thousands of miles away. The caregiver could then provide the right amount to each patient and conserve oxygen for future use or possibly allow more patients to be transported on the same flight.

One problem caregivers often face, especially in emergency situations, is the lack of a uniform recording system for observational data. The LTM/iRevive system addresses the challenge while keeping the process simple. "The system features the Body Picker, a graphic depiction of the human body that is divided into zones," Crossin said. "The Body Picker's zones get smaller as the user gets closer to the desired location, such as the second joint of a left-hand index finger. Users also have the option to use menus to record the data if they prefer not to use the graphics option."

Crossin said the group plans to begin a clinical trial of the combined system in early 2011 on about 40 patients. He added that the LTM/iRevive system has the capability to receive data from other monitoring systems, and future versions will include a step-by-step treatment tool providing information for specific conditions.

The project is one of nine currently in the NSBRI Smart Medical Systems and Technology Team's portfolio. The team's goal is the development of intelligent, integrated medical systems to assist in delivering quality health care during spaceflight and exploration.

Related Stories

Recommended for you

Pickled in 'cognac', Chopin's heart gives up its secrets

November 26, 2017
The heart of Frederic Chopin, among the world's most cherished musical virtuosos, may finally have given up the cause of his untimely death.

Sugar industry withheld evidence of sucrose's health effects nearly 50 years ago

November 21, 2017
A U.S. sugar industry trade group appears to have pulled the plug on a study that was producing animal evidence linking sucrose to disease nearly 50 years ago, researchers argue in a paper publishing on November 21 in the ...

Female researchers pay more attention to sex and gender in medicine

November 7, 2017
When women participate in a medical research paper, that research is more likely to take into account the differences between the way men and women react to diseases and treatments, according to a new study by Stanford researchers.

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

Team eradicates hepatitis C in 10 patients following lifesaving transplants from infected donors

April 30, 2017
Ten patients at Penn Medicine have been cured of the Hepatitis C virus (HCV) following lifesaving kidney transplants from deceased donors who were infected with the disease. The findings point to new strategies for increasing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.