HSAN 1: Identification of new mutations, more accurate diagnosis and improved genetic counseling

October 8, 2010, VIB (the Flanders Institute for Biotechnology)

Belgian researchers at the University of Antwerp have identified several mutations that play an important role in the development of Hereditary Sensory and Autonomous Neuropathy Type 1 (HSAN 1). HSAN 1 is a rare genetic disorder of the peripheral nervous system. Identification of the mutations will lead to a more accurate diagnosis of the disease in patients as well as improved genetic counseling and prenatal diagnostic tests for couples who are carriers and planning a pregnancy.


Hereditary Sensory and Autonomous Neuropathy (HSAN) refers to a group of hereditary disorders of the . HSAN primarily affects the sensory nerves, leading to a loss of feeling in the hands and feet. However, it can also affect the autonomous nerves, which are responsible for such functions as blood pressure control and sweat production.

The course of the illness in HSAN patients varies greatly and is divided into six subtypes. The symptoms of HSAN 1 appear during adolescence or adulthood. In addition to pronounced sensory disturbances, patients may also suffer to a certain extent from and atrophy of the feet, hands and lower legs due to damage of the motor nerves.


Genetically speaking, HSAN is extremely heterogeneous. To-date mutations in nine different genes have been described, but studies have shown that there are other HSAN-causing genes remaining to be discovered. Annelies Rotthier and her colleagues conducted a DNA study on 78 HSAN patients under the leadership of Vincent Timmerman and in collaboration with researchers in other countries. They looked for mutations in the second subunit of palmitoyltransferase (SPTLC2) protein. Three different mutations in four patients were identified.

Based on what they observed in both cells from patients and genetically modified , the researchers were able to demonstrate that the identified mutations led to decreased activity of the SPT enzyme. The mutated enzyme also proved to result in an accumulation of toxic molecules in the cell. Future research will determine whether lowering the concentration of these toxic molecules could serve as a therapy for HSAN patients.

Significance of discovery

The significance of these findings is twofold. First and foremost, the discovery of mutations in another gene is important for HSAN patients, since they can now be screened for SPTLC2 mutations. This will improve diagnostic accuracy, which is important for evaluating the prognosis of the patient, as well as facilitate and prenatal diagnosis.

These results also contribute to our understanding of the activity of the peripheral nervous system in both sick and healthy people. Although HSAN is rare, the disease mechanisms that have been uncovered by this study could be of major significance for other disorders of the peripheral nervous system, such as the neuropathies associated with diabetes and chemotherapy. The latter may occur much more frequently than HSAN but their underlying disease mechanisms are still largely unknown.

Related Stories

Recommended for you

First 'non-gene' mutations behind neurodevelopmental disorders discovered

March 21, 2018
In the largest study of its kind, genetic changes causing neurodevelopmental disorders have been discovered by scientists at the Wellcome Sanger Institute and their collaborators in the NHS Regional Genetics services. The ...

Two genes likely play key role in extreme nausea and vomiting during pregnancy

March 21, 2018
Most women experience some morning sickness during pregnancy, but about 2 percent of pregnant women experience a more severe form of nausea and vomiting.

Scientists identify genes that could inform novel therapies for EBV-related cancers

March 20, 2018
VCU Massey Cancer Center researchers have identified two genes that are responsible for governing the replication of the Epstein-Barr virus, an infection that drives the growth of several types of cancer. The discovery could ...

Scientists discover how gene mutation reduces the need for sleep

March 19, 2018
It's every over-achiever's dream: a gene mutation that allows them to function normally with just four to six hours of sleep a night instead of the normal eight.

New osteoarthritis genes discovered

March 19, 2018
In the largest study of its kind, nine novel genes for osteoarthritis have been discovered by scientists from the Wellcome Sanger Institute and their collaborators. Results of the study, published today (19 March) in Nature ...

At-home genetic testing leads to misinterpretations of results

March 19, 2018
Home genetic tests like AncestryDNA and 23andMe are more popular than ever, with sales topping $99 million in 2017. But a new study led by a Boston University School of Public Health researcher highlights the potential negative ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.