An X-ray for your genes

October 7, 2010, Tel Aviv University

Prescription drugs and their dosages may be standardized, but not every patient reacts to a medicine in the same way. The personal genetic characteristics of individuals and populations can explain why a specific prescription successfully treats one patient and not another, so medical researchers are adopting the new approach called "personalized medicine" and a Tel Aviv University lab is leading the way.

Dr. Noam Shomron of Tel Aviv University's Sackler Faculty of Medicine is developing a new method for the advancement of , an expanding area of research that optimizes individual patient care. With a deep sequencer, a machine that reads the human genome and its expression, Dr. Shomron is looking at how the genetic expression of small regulatory genes, called microRNAs, affects the way a patient reacts to medication. This could mean fewer deaths from adverse drug effects and novel and safe uses for existing medications.

Dr. Shomron hopes to create a map of gene regulatory pathways –– how a person's genes react to a drug –– and how this affects a person's ability to metabolize different drugs. Some of his recent findings were detailed the journal Pharmacogenomics.

For matters of the heart

Each person has a slightly different genetic make-up, leading to small differences in the way genes are expressed and regulated. Major players in gene regulation are microRNAs, genetic snippets that control many of our genes by binding and degrading them, including those involved in drug metabolism, explains Dr. Shomron. Studying particular genes and their regulators is an important step in determining the efficacy of a medication for individual patients.

This genetic "fingerprinting" has quickened interest in tailoring treatment for each person's particular needs. In their recent experiments, Dr. Shomron and his team of researchers examined how a common blood thinning medication to treat heart disease can be strongly affected with these microRNA molecules. With this information, researchers might be able to predict how a patient will react to their prescriptions.

Once they have mapped the connections between and different medications, explains Dr. Shomron, he and his team of researchers will create a comprehensive database to help physicians make important decisions regarding patient care. This database will be available to clinicians around the world. In the future, when physicians decide to administer a drug, he says, they will be able to scan the patient's genome and decide which medication is best to prescribe as well as its optimal dosage.

A prescription for the future

"One day, people will be able to have their whole sequenced and their gene and microRNA expression mapped, and this will become a part of their medical file," he says. "They will be able to bring this information with them from doctor to doctor, much like an x-ray." This will also help doctors understand how different drugs combine when a patient is taking one or more medications, which may avoid a toxic overload of chemicals.

Mostly, says Dr. Shomron, pharmaceuticals and pharmaceutical companies need to comprehend the scope of microRNA's involvement in personalized medicine in order to take advantage of this emerging scientific field. He hopes to accelerate this understanding.

Related Stories

Recommended for you

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

A gene that increases the risk of pancreatic cancer controls inflammation in normal tissue

February 14, 2018
Inflammation is a defensive response of the body to pathogens, but when it persists, it can be harmful, even leading to cancer. Hence, it is crucial to understand the relationship between inflammation and cancer. A group ...

Scientists develop low-cost way to build gene sequences

February 13, 2018
A new technique pioneered by UCLA researchers could enable scientists in any typical biochemistry laboratory to make their own gene sequences for only about $2 per gene. Researchers now generally buy gene sequences from commercial ...

New insights into gene underlying circadian rhythms

February 13, 2018
A genetic modification in a "clock gene" that influences circadian rhythm produced significant changes in the length and magnitude of cycles, providing insight into the complex system and giving scientists a new tool to further ...

Clues to aging found in stem cells' genomes

February 13, 2018
Little hints of immortality are lurking in fruit flies' stem cells.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.