New mechanism links cellular stress and brain damage

December 8, 2010

A new study uncovers a mechanism linking a specific type of cellular stress with brain damage similar to that associated with neurodegenerative disease. The research, published by Cell Press in the December 9 issue of the journal Neuron, is the first to highlight the significance of the reduction of a specific calcium signal that is directly tied to cell fate.

Body cells are constantly exposed to various environmental stresses. Although cells possess some natural defenses, excessive stress can lead to a type of cell death called apoptosis. "It is thought that excessive stress impacts by inducing neuronal apoptosis and may play a role in such as Alzheimer's disease and Huntington's disease (HD)," explains senior study author, Dr. Katsuhiko Mikoshiba, from the Laboratory for Developmental Neurobiology at RIKEN Brain Science Institute.

HD is also associated with abnormal and the accumulation of misfolded proteins. Altered function of an intracellular structure called the endoplasmic reticulum (ER) that plays a key role in protein "quality control" and is a critical regulator of intracellular calcium signaling has been implicated in HD pathogenesis, but the specific underlying mechanisms linking ER stress with calcium and apoptosis are poorly understood.

Dr. Mikoshiba and colleagues demonstrated that a neuronal protein called inositol 1,4,5-trisphosphate receptor 1 (IP3R1) which regulates cellular calcium signaling was destroyed by ER stress and subsequently induced neuronal cell death and . The researchers went on to show that a protective "chaperone" protein called GRP78 positively regulated IP3R1 and that ER stress led to an impaired IP3R1-GRP78 interaction, which has also been observed in an of HD.

"Based on our observation that the functional interaction between IP3R1 and GRP78 is impaired during ER stress and in the HD model, we propose that IP3R1 functions to protect the brain against stress and that the linkage between ER stress, IP3/calcium signaling, and neuronal cell death are associated with neurodegenerative disease." concludes Dr. Mikoshiba.

Related Stories

Recommended for you

Scientists reveal new avenue for drug treatment in neuropathic pain

November 24, 2017
New research from King's College London has revealed a previously undiscovered mechanism of cellular communication, between neurons and immune cells, in neuropathic pain.

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.