Uncovering the neurobiological basis of general anesthesia

December 30, 2010, Massachusetts General Hospital

The use of general anesthesia is a routine part of surgical operations at hospitals and medical facilities around the world, but the precise biological mechanisms that underlie anesthetic drugs' effects on the brain and the body are only beginning to be understood. A review article in the December 30 New England Journal of Medicine brings together for the first time information from a range of disciplines, including neuroscience and sleep medicine, to lay the groundwork for more comprehensive investigations of processes underlying general anesthesia.

"A key point of this article is to lay out a conceptual framework for understanding by discussing its relation to sleep and coma, something that has not been done in this way before," says Emery Brown, MD, PhD, of the Massachusetts General Hospital (MGH) Department of Anesthesia, Critical Care and Pain Medicine, lead author of the NEJM paper. "We started by stating the specific physiological states that comprise general anesthesia – unconsciousness, amnesia, lack of pain perception and lack of movement while stable cardiovascular, respiratory and thermoregulatory systems are maintained – another thing that has never been agreed upon in the literature; and then we looked at how it is similar to and different from the states that are most similar – sleep and coma."

After laying out their definition, Brown and his co-authors – Ralph Lydic, PhD, a sleep expert from the University of Michigan, and Nicholas Schiff, MD, an expert in coma from Weill Cornell Medical College – compare the physical signs and electroencephalogram (EEG) patterns of general anesthesia to those of sleep. While it is common to describe general anesthesia as going to sleep, there actually are significant differences between the states, with only the deepest stages of sleep being similar to the lightest phases of anesthesia induced by some types of agents.

While natural sleep normally cycles through a predictable series of phases, general anesthesia involves the patient being taken to and maintained at the phase most appropriate for the procedure, and the phases of general anesthesia at which surgery is performed are most similar to states of coma. "People have hesitated to compare general anesthesia to coma because the term sounds so harsh, but it really has to be that profound or how could you operate on someone?" Brown explains. "The key difference is this is a coma that is controlled by the anesthesiologist and from which patients will quickly and safely recover."

In detailing how different anesthetic agents act on different brain circuits, the authors point out some apparently contradictory information – some drugs like ketamine actually activate rather than suppress neural activity, an action that can cause hallucinations at lower doses. Ketamine blocks receptors for the excitatory transmitter glutamate, but since it has a preference for receptors on certain inhibitory neurons, it actually stimulates activity when it blocks those inhibitors. This excess brain activity generates unconsciousness through a process similar to what happens when disorganized data travels through an electronic communication line and blocks any coherent signal. A similar mechanism underlies seizure-induced unconsciousness.

Brown also notes that recent reports suggest an unexpected use for ketamine – to treat depression. Very low doses of the drug have rapidly reduced symptoms in chronically depressed patients who had not responded to traditional antidepressants. Ketamine is currently being studied to help bridge the first days after a patient begins a new antidepressant – a time when many may be at risk of suicide – and the drug's activating effects may be akin to those of electroconvulsive therapy.

Another unusual situation the authors describe is the case of a brain-injured patient in a minimally conscious state who actually recovered some functions through administration of the sleep-inducing drug zolpidem (Ambien). That patient's case, analyzed previously by Schiff, mirrors a common occurrence called paradoxical excitation, in which patients in the first stage of general anesthesia may move around or vocalize. The authors describe how zolpidem's suppression of the activity of a brain structure called the globus pallidus – which usually inhibits the thalamus – stimulates activity in the thalamus, which is a key neural control center. They hypothesize that a similar mechanism may underlie paradoxical excitation.

"Anesthesiologists know how to safely maintain their patients in the states of general anesthesia, but most are not familiar with the neural circuit mechanisms that allow them to carry out their life-sustaining work," Brown says. "The information we are presenting in this article – which includes new diagrams and tables that don't appear in any anesthesiology textbook – is essential to our ability to further understanding of general anesthesia, and this is the first of several major reports that we anticipate publishing in the coming year."

Schiff adds, "We think this is, conceptually, a very fresh look at phenomena we and others have noticed and studied in sleep, coma and use of general anesthesia. By reframing these phenomena in the context of common circuit mechanisms, we can make each of these states understandable and predictable."

Related Stories

Recommended for you

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.