Computer-assisted diagnosis tools to aid pathologists

January 31, 2011
New technologies allow researchers to automate the typically manual identification (red boundaries) of potentially malignant regions in tissue samples of Follicular Lymphoma. The computer-aided process developed through the Ohio Supercomputer Center by a team of researchers at the Ohio State University delivers very accurate, highly consistent results in an efficient way (blue boundaries). Credit: Gurcan/The Ohio State University

Researchers are leveraging Ohio Supercomputer Center resources to develop computer-assisted diagnosis tools that will provide pathologists grading Follicular Lymphoma samples with quicker, more consistently accurate diagnoses.

"The advent of digital whole-slide scanners in recent years has spurred a revolution in imaging technology for histopathology," according to Metin N. Gurcan, Ph.D., an associate professor of at The Ohio State University Medical Center. "The large multi-gigapixel images produced by these scanners contain a wealth of information potentially useful for computer-assisted disease diagnosis, grading and prognosis."

(FL) is one of the most common forms of occurring in the United States. FL is a cancer of the human lymph system that usually spreads into the blood, bone marrow and, eventually, .

A World Health Organization pathological grading system is applied to biopsy samples; doctors usually avoid prescribing severe therapies for lower grades, while they usually recommend radiation and chemotherapy regimens for more aggressive grades.

Accurate grading of the pathological samples generally leads to a promising prognosis, but diagnosis depends solely upon a labor-intensive process that can be affected by human factors such as fatigue, reader variation and bias. Pathologists must visually examine and grade the specimens through high-powered microscopes.

Processing and analysis of such high-resolution images, Gurcan points out, remain non-trivial tasks, not just because of the sheer size of the images, but also due to complexities of underlying factors involving differences in staining, illumination, instrumentation and goals.

To overcome many of these obstacles to automation, Gurcan and medical center colleagues, Dr. Gerard Lozanski and Dr. Arwa Shana'ah, turned to the Ohio Supercomputer Center.

A research group led by Ohio State's Metin Gurcan, Ph.D., has been leveraging Ohio Supercomputer Center resources to develop a computer-assisted diagnosis tool to improve grading of Follicular Lymphoma, a common form of non-Hodgkin Lymphoma. Credit: MacConnell/Ohio Supercomputer Center

Ashok Krishnamurthy, Ph.D., interim co-executive director of the center, and Siddharth Samsi, a computational science researcher there and an OSU graduate student in Electrical and Computer Engineering, put the power of a supercomputer behind the process.

"Our group has been developing tools for grading of follicular lymphoma with promising results," said Samsi. "We developed a new automated method for detecting lymph follicles using stained tissue by analyzing the morphological and textural features of the images, mimicking the process that a human expert might use to identify follicle regions. Using these results, we developed models to describe tissue histology for classification of FL grades."

Histological grading of FL is based on the number of large malignant cells counted in within tissue samples measuring just 0.159 square millimeters and taken from ten different locations. Based on these findings, FL is assigned to one of three increasing grades of malignancy: Grade I (0-5 cells), Grade II (6-15 cells) and Grade III (more than 15 cells).

"The first step involves identifying potentially malignant regions by combining color and texture features," Samsi explained. "The second step applies an iterative watershed algorithm to separate merged regions and the final step involves eliminating false positives."

The large data sizes and complexity of the algorithms led Gurcan and Samsi to leverage the parallel computing resources of OSC's Glenn Cluster in order to reduce the time required to process the images. They used MATLAB and the Parallel Computing Toolbox™ to achieve significant speed-ups. Speed is the goal of the National Cancer Institute-FUNDED research project, but accuracy is essential. Gurcan and Samsi compared their computer segmentation results with manual segmentation and found an average similarity score of 87.11 percent.

"This algorithm is the first crucial step in a computer-aided grading system for Follicular Lymphoma," Gurcan said. "By identifying all the follicles in a digitized image, we can use the entire tissue section for grading of the disease, thus providing experts with another tool that can help improve the accuracy and speed of the diagnosis."

Related Stories

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.