Conceptualizing cancer cells as ancient 'toolkit'

February 7, 2011, Arizona State University
Shown here, the upper row shows a normal breast cell with a smooth nuclear membrane of regular shape. The bottom row shows an aggressive breast cancer cell with a distinctively irregular nucleus and overall shape. The left column shows the whole cell, with the cytoplasm appearing as a gray haze. The middle column shows the naked nuclear membrane and the right column shows density variations in the nuclear DNA. (Image courtesy of Vivek Nandakumar, Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University)

(PhysOrg.com) -- Despite decades of research and billions of dollars, cancer remains a major killer, with an uncanny ability to evade both the body's defenses and medical intervention. Now an Arizona State University scientist believes he has an explanation.

" is not a random bunch of selfish rogue cells behaving badly, but a highly-efficient pre-programmed response to stress, honed by a long period of evolution," claims professor Paul Davies, director of the BEYOND Center for Fundamental Concepts in Science at ASU and principal investigator of a major research program funded by the National Cancer Institute designed to bring insights from physical science to the problem of cancer.

In a paper published online Feb. 7 in the UK Institute of Physics journal Physical Biology, Davies and Charles Lineweaver from the Australian National University draw on their backgrounds in astrobiology to explain why deploy so many clever tricks in such a coherent and organized way.

They say it's because cancer revisits tried-and-tested genetic pathways going back a billion years, to the time when loose collections of cells began cooperating in the lead-up to fully developed multicellular life. Dubbed by the authors "Metazoa 1.0," these early assemblages fell short of the full cell and organ differentiation associated with modern – like humans.

But according to Davies and Lineweaver, the genes for the early, looser assemblages – Metazoa 1.0 – are still there, forming an efficient toolkit. Normally it is kept locked, suppressed by the machinery of later genes used for more sophisticated body plans. If something springs the lock, the ancient genes systematically roll out the many traits that make cancer such a resilient form of life – and such a formidable adversary.

"Tumors are a re-emergence of our inner Metazoan 1.0, a throwback to an ancient world when multicellular life was simpler," says Davies. "In that sense, cancer is an accident waiting to happen."

If Davies and Lineweaver are correct, then the genomes of the simplest multicellular organisms will hide clues to the way that cancer evades control by the body and develops resistance to chemotherapy. And their approach suggests that a limited number of genetic pathways are favored by cells as they become progressively genetically unstable and malignant, implying that cancer could be manageable by a finite suite of drugs in the coming era of personalized medicine.

"Our new model should give oncologists new hope because cancer is a limited and ultimately predictable atavistic adversary," says Lineweaver. "Cancer is not going anywhere evolutionarily; it just starts up in a new patient the way it started up in the previous one."

The authors also believe that the study of cancer can inform astrobiology. "It's not a one-way street," says Davies. "Cancer can give us important clues about the nature and history of life itself."

More information: iopscience.iop.org/1478-3975/8/1/015001

Related Stories

Recommended for you

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

February 23, 2018
A research team at the University of California, Riverside has discovered a way for chemotherapy drug paclitaxel to target migrating, or circulating, cancer cells, which are responsible for the development of tumor metastases.

Lab-grown 'mini tumours' could personalise cancer treatment

February 23, 2018
Testing cancer drugs on miniature replicas of a patient's tumour could help doctors tailor treatment, according to new research.

An under-the-radar immune cell shows potential in fight against cancer

February 23, 2018
One of the rarest of immune cells, unknown to scientists a decade ago, might prove to be a potent weapon in stopping cancer from spreading in the body, according to new research from the University of British Columbia.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

ormondotvos
not rated yet Feb 07, 2011
This seems a very important conceptual leap, from rogue to atavistic toolkit.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.