Listening to music is biological

February 25, 2011

Our willingness to listen to music is biological trait and related to the neurobiological pathways affecting social affiliation and communication, suggests a recent Finnish study published in the Journal of Human Genetics.

Music is listened in all known cultures. Similarities between human and animal song have been detected: both contain a message, an intention that reflects innate that is interpreted correctly even among different species. In fact, several behavioral features in listening to music are closely related to attachment: lullabies are song to infants to increase their attachment to a parent, and singing or playing music together is based on teamwork and may add group cohesion.

In the study of University of Helsinki and Sibelius-Academy, Helsinki, Finland, the biological basis of music listening was examined. Data consisted of 31 Finnish families with 437 family members. The participants of the study were 8—93 years old from professional or amateur musicians to participants with no music education. To dissect listening habits further, active and passive listening of music were separately defined and surveyed using questionnaire. Active listening was defined as attentive listening of music, including attending concerts. Passive listening was defined as hearing or listening to music as background music. All participants were tested for musical aptitude using three music tests and a blood sample was taken for DNA analysis.

In the study the participants reported weekly average active listening to music of 4.6 hours and passive listening to music of 7.3 hours. It was noted that music education, high music test scores and creativity in music tended to add active music listening.

Recent genetic studies have shown familial aggregation of tone deafness, absolute pitch, musical aptitude and creative functions in music. In this study, willingness to listen to music and the level of music education varied in pedigrees.

This is one of the first studies where listening to music has been explored at molecular level, and the first study to show association between arginine vasopressin receptor 1A (AVPR1A) gene variants with listening to music. Previously, an association between AVPR1A and musical aptitude has been reported. AVPR1A gene is a gene that has been associated with social communication and attachment behavior in human and other species. The vasopressin homolog increases vocalization in birds and influences on breeding of lizards and fishes. The results suggest biological contribution to the sound perception (here listening to music), provide a molecular evidence of sound or music's role in social communication, and are providing tools for further studies on gene-culture evolution in music.

The study belongs to the larger research project where biological basis of musical aptitude is investigated. The leader of the study is Professor Irma Järvelä from the University of Helsinki. The principal investigator is MSc Liisa Ukkola-Vuoti. The experts in statistical analyses are docent Päivi Onkamo and BSc Jaana Oikkonen from the University of Helsinki. Experts in musical aptitude are Doctor of Music Pirre Raijas and docent Kai Karma from Sibelius-Academy. The study has been published in the .

Related Stories

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.