A new model for studying Parkinson's

February 1, 2011
This is a cervical slice showing the healthy left-hand side of the brain and the damaged, Parkinson's disease side with lesions provoked by the LKKR2 gene mutation. Credit: EPFL

Evidence is steadily mounting that genetic factors play an important role in many cases of Parkinson's disease (PD). In a study published February 2, 2011, online in the Journal of Neuroscience, researchers from the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland report a new mammalian model for studying a specific gene mutation commonly found in PD sufferers, opening the door to new drugs to fight the malady.

"This is a great step forward toward a more comprehensive understanding of how the disease works, and how it can be diagnosed and treated," explains neuroscientist and EPFL President Patrick Aebischer, lead author of the study.

PD is a common neurodegenerative disease that greatly reduces quality of life and costs the United States around 23 billion dollars a year. Until now, researchers have encountered difficulty in reproducing PD pathology in animals because of an incomplete understanding of the disease.

Recently, a mutation of the gene coding for LRRK2, a large enzyme in the brain, has emerged as the most prevalent genetic cause of PD (genetics are implicated in about 10 percent of all PD cases). When the enzyme is mutated, it becomes hyperactive, causing the death of vulnerable neurons and leading to a reduction in levels of the brain neurotransmistter dopamine. This decrease in dopamine eventually triggers the symptoms characteristic of Parkinson's, such as tremors, instability, impaired movement, and later stage dementia.

A vector is introduced into the healthy brain cell and transmits the mutated gene. Credit: EPFL

Now, with funding from the Michael J. Fox Foundation for Parkinson's Research, Aebischer and his team in the Neurodegenerative Studies Laboratory at EPFL, have successfully introduced mutant LRRK2 enzyme into one hemisphere of a rat brain, resulting in the same PD manifestations that occur in humans in one side of the rodent's body. To do this, the researchers spent two years producing and optimizing a viral vector to deliver mutated, LRRK2 coding DNA into the rat brain. LRRK2 is a large and complicated enzyme and designing a vector capable of transporting its extremely long genetic code was no small feat.

The new animal model developed by EPFL is sure to benefit future Parkinson's research. The fact that LRRK2 is an enzyme—a catalyzing protein involved in chemical reactions—makes it drug accessible and therefore of specific interest to researchers looking for neuroprotective strategies, or pharmaceutical treatments that halt or slow disease progression by protecting vulnerable neurons. Armed with the LRRK2 model, new pharmaceuticals that inhibit the hyper-activity of the enzyme could one day prevent the destructive chain of events that leads to neurodegeneration and devastation in many with PD.

Related Stories

Recommended for you

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.