Researchers pinpoint patients who receive greatest benefit from heart failure treatment

March 1, 2011, University of Rochester Medical Center

Mild heart failure patients with a particular condition that results in disorganized electrical activity throughout the heart benefit substantially from cardiac resynchronization therapy with defibrillator (CRT–D), according to a study published in the American Heart Association journal Circulation.

In patients with the condition, known as left bundle branch block or LBBB, CRT-D therapy reduced progression and the risk of ventricular tachyarrhythmias, fast and potentially life-threatening heart rhythms. Heart failure patients without LBBB did not receive any benefit from the therapy.

The analysis, based on the major study which tested the device – the MADIT-CRT trial – led the FDA to extend the approval of the CRT-D in September 2010 to patients with mild heart failure and LBBB to prevent progression to advanced heart failure. The device, developed by Boston Scientific, was originally approved to treat patients with severe heart failure.

"This study allowed us to identify the specific set of patients that receive the greatest benefit from this device," said Wojciech Zareba, M.D., Ph.D., lead study author and director of the Heart Research Follow-up Program at the University of Rochester Medical Center. "Our analysis highlights the fact that this therapy is not equally effective in all mild heart failure patients and was the basis of the FDA's approval of the therapy only in patients with left bundle branch block."

Zareba's team found that patients with LBBB who received CRT-D therapy had a significant 53 percent reduction in the risk of a heart failure event, such as being hospitalized with heart failure symptoms, or death, compared to LBBB patients who only received an implantable cardioverter defibrillator (ICD). The risk of ventricular tachyarrhythmias was also considerably less in LBBB patients with CRT-D.

CRT-D therapy combines an ICD, which senses dangerous abnormal heart rhythms and attempts to shock the heart back into a normal rhythm, with (CRT), which coordinates the beating of the heart so it can pump blood throughout the body more effectively.

The study included 1,817 patients and researchers analyzed electrocardiograms – maps of the heart's electrical activity – to determine which patients had electrical disturbances and what type. Seventy percent of study participants had LBBB. LBBB patients were more often female and had higher rates of non-ischemic heart disease, a disorder typically characterized by inflammatory scarring of the heart muscle.

Study authors evaluated the effects of CRT-D versus ICD therapy in patients with and without LBBB. They found that in LBBB patients, CRT-D therapy effectively prevented deterioration of the heart, otherwise known as cardiac remodeling, by preventing enlargement of the heart with more effective contraction of the heart.

"We believe this therapy is so effective in patients with LBBB because their hearts don't contract in a synchronous way, rather, the pumping action is quite out of sync," noted Zareba. "CRT-D therapy paces the heart and makes these patients much better very quickly."

Beyond mild heart failure patients, the results are leading experts to rethink current guidelines recommending the use of CRT-D therapy for all advanced heart failure patients. In this age of personalized medicine, as treatments are continually directed towards subsets of patients with particular characteristics or biologic markers, the group of advanced heart failure patients that receive CRT-D therapy may be narrowed to those with LBBB, as well.

Related Stories

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.