High iron, copper levels block brain-cell DNA repair

May 20, 2011

No one knows the cause of most cases of Alzheimer's, Parkinson's and other neurodegenerative disorders. But researchers have found that certain factors are consistently associated with these debilitating conditions. One is DNA damage by reactive oxygen species, highly destructive molecules usually formed as a byproduct of cellular respiration. Another is the presence of excessive levels of copper and iron in regions of the brain associated with the particular disorder.

University of Texas Medical Branch at Galveston researchers have discovered how these two pieces of the neurodegenerative disease puzzle fit together, a connection they describe in a review article in the current Journal of Alzheimer's Disease. A high level of copper or iron, they say, can function as a "double whammy" in the brain by both helping generate large numbers of the DNA-attacking reactive oxygen species and interfering with the machinery of that prevents the deleterious consequences of genome damage.

"It's been suggested that an imbalance of DNA damage and repair produces a buildup of unrepaired that can initiate neurodegenerative pathology," said postdoctoral fellow Muralidhar Hegde, lead author of the paper. "We don't yet know enough about all the involved, but we have found multiple toxic mechanisms linking elevated iron and copper levels in the brain and extensive DNA damage — pathological features associated with most neurodegenerative disorders."

Humans ordinarily have small amounts of iron and copper in their bodies — in fact, the elements are essential to health. But some people's tissues contain much larger quantities of iron or copper, which overwhelm the proteins that normally bind the metals and sequester them for safe storage. The result: so-called "free" iron or copper ions, circulating in the blood and able to initiate chemical reactions that produce reactive oxygen species.

"Reactive cause the majority of the brain cell DNA damage that we see in Alzheimer's and Parkinson's disease, as well as most other neurodegenerative disorders," Hegde said. "It's bad enough if this damage occurs on one strand of the DNA double helix, but if both strands are damaged at locations close to each other you could have a double-strand break, which would be fatal to the cell."

Normally, special DNA repair enzymes would quickly mend the injury, restoring the genome's integrity. But experiments conducted by Hegde and his colleagues showed that iron and copper significantly interfere with the activity of two DNA repair enzymes, known as NEIL1 and NEIL2.

"Our results show that by inhibiting NEIL1 and NEIL2, iron and copper play an important role in the accumulation of in neurodegenerative diseases," Hegde said.

The researchers got a surprise when they tested substances that bond to iron and copper and could protect NEIL1 from the metals. One of the strongest protective agents was the common South Asian spice curcumin, which also has been shown to have other beneficial health effects.

"The results from curcumin were quite beautiful, actually," Hegde said. "It was very effective in maintaining NEIL activity in cells exposed to both and iron."

Related Stories

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.