Rett protein MeCP2 needed for proper adult neuron function

June 2, 2011, Baylor College of Medicine

The protein MeCP2 is porridge to the finicky neuron. Like Goldilocks, the neuron or brain cell needs the protein in just the right amount. Girls born with dysfunctional MeCP2 (methyl-CpG-binding protein 2) develop Rett syndrome, a neurological disorder. Too much MeCP2 can cause spasticity or developmental delay with autism-like symptoms in boys.

Now, researchers at Baylor College of Medicine and Texas Children's Hospital have found that the neuron needs a steady supply of this for its entire existence. A report on this research appears online in .

was found in 1999 in the laboratory of Dr. Huda Zoghbi, director of the Jan and Dan Duncan Neurological Research Institute at TCH and professor of neurology, neuroscience, pediatrics and molecular and at BCM and a Howard Hughes Medical Institute Investigator. A mutation in MeCP2 results in Rett syndrome, a that strikes mainly girls. Male fetuses born with the mutation (which results in dysfunctional protein) die before birth, but girls appear normal until they are between 6 and 18 months. Then they begin to regress and their growth slows. They develop abnormal hand motions such as wringing. Their crawling and walking regresses and they eventually lose the ability to speak or communicate. They exhibit some symptoms of autism.

Clearly, MeCP2 is critical to normal mental functioning, but a question remained. Do neurons need MeCP2 throughout life or would they be protected and work properly if MeCP2 is provided only early in life and then discontinued during adulthood?

To the surprise of Zoghbi and M.D./Ph.D. student Christopher McGraw, the paper's first author, the neurons need the protein throughout life.

"To continue the porridge analogy, taking it away puts you in the same position as someone who never had it," said McGraw.

To demonstrate this, they developed a mouse from which they could eliminate MeCP2 in adulthood.

"We found that they appeared just like the mice born without the protein," said McGraw. The mice developed the Rett-like behaviors, including the limb "clasping" behavior and impaired learning and memory. The mice also died prematurely, 13 weeks after the protein was deleted. Mice born lacking the protein die at about 13 weeks of age as well.

"What this suggests is that the function of this protein is always needed," said McGraw. "Having this protein up to adulthood does not result in the construction of a nervous system that is any more resilient to the loss of MeCP2 than one born without it."

"That was the most surprising to us," said Zoghbi. "The upside of this is if you can add the protein back, you can rescue the neurons, which is indeed what happened when the lab of Dr. Adrian Bird, researcher with the Wellcome Trust Center for Cell Biology, added the gene back in adults in past research," she said. "The new study shows there are no developmental abnormalities. It is all about needing the protein right there to tell the what to do."

MeCP2 affects the epigenetic program of the cell, changing the expression levels of certain genes without changing the sequence of the DNA itself. Scientists are still trying to determine exactly what it does in the cell, and that may enable physicians to develop a treatment that patients would take throughout their lives.

"If we can figure a way to provide the functions of this protein we have a chance to treat these patients successfully and maintain their health," she said.

Just giving patients MeCP2 would not work because of the need to fine-tune the amount of protein in the cell.

She and colleagues are looking instead for drugs that can serve the same function as MeCP2 or that can alter the pathways through which this gene works.

Dr. Rodney C. Samaco of BCM also participated in this research.

More information: www.sciencemag.org/content/early/recent

Related Stories

Recommended for you

New neurons in the adult brain are involved in sensory learning

February 23, 2018
Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that ...

Do you see what I see? Researchers harness brain waves to reconstruct images of what we perceive

February 22, 2018
A new technique developed by neuroscientists at the University of Toronto Scarborough can, for the first time, reconstruct images of what people perceive based on their brain activity gathered by EEG.

Neuroscientists discover a brain signal that indicates whether speech has been understood

February 22, 2018
Neuroscientists from Trinity College Dublin and the University of Rochester have identified a specific brain signal associated with the conversion of speech into understanding. The signal is present when the listener has ...

Superagers' youthful brains offer clues to keeping sharp

February 22, 2018
It's pretty extraordinary for people in their 80s and 90s to keep the same sharp memory as someone several decades younger, and now scientists are peeking into the brains of these "superagers" to uncover their secret.

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Nolan film 'Memento' reveals how the brain remembers and interprets events from clues

February 22, 2018
Key repeating moments in the film give viewers the information they need to understand the storyline. The scenes cause identical reactions in the viewer's brain. The results deepen our understanding of how the brain functions, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.