Researchers identify how a gene linked to both Alzheimer's disease and type 2 diabetes works

July 18, 2011, The Mount Sinai Hospital

Researchers at Mount Sinai School of Medicine have identified how a gene for a protein that can cause Type 2 diabetes, also possibly kills nerve cells in the brain, thereby contributing to Alzheimer's disease.

The gene, called SorCS1, controls the generation of amyloid-beta (Abeta) in the brain. Abeta plays a key role in the development of Alzheimer's disease. The researchers previously linked SorCS1 to Alzheimer's disease and identified where the molecules lived in the cell, but not how they control Abeta. The new data were presented today at the Alzheimer's Association's Annual International Conference in Paris.

Sam Gandy, MD, PhD, the Mount Sinai Professor in Alzheimer's Disease Research, Professor of Neurology and Psychiatry, and Associate Director of the Alzheimer's Disease Research Center at Mount Sinai School of Medicine, led the research team with Rachel Lane, PhD, a postdoctoral researcher in Dr. Gandy's lab.

The researchers determined various "traffic patterns" in the cell for the (APP) that makes Abeta and uncovered how much APP is converted into the toxic, and ultimately nerve-killing, Abeta. In some experiments Drs. Lane and Gandy altered the dose of the diabetes gene, SorCS1, and evaluated how that changed the "traffic pattern" that APP used to move around the cell and generate Abeta. In other experiments, Dr. Lane made small changes in the SorCS1 gene's and again saw dramatic changes in the "traffic pattern" of APP around the cell.

These data suggest that SorCS1 controls the movement of APP within the cell between areas where Abeta is readily made to areas where Abeta is not so easily made. In turn, the "traffic pattern" of influences the amount of Abeta being made by cells. The implication is that people with deficiencies in SorCS1 are at higher risk of developing Alzheimer's disease because their APP spends too much time in the region of the cell where APP is broken down to make the toxic Abeta.

"The great thing about studying SorCS1," said Dr. Gandy, "is that we already have entirely new ideas about how to treat both and . Our hunch is that SorCS1 also controls how the insulin receptor moves around the cell, but we have not yet proven that," he said. "With both diseases reaching epidemic proportions, this discovery is encouraging news that brings us one step closer to developing treatments."

Explore further: Noncoding RNA may promote Alzheimer's disease

Related Stories

Noncoding RNA may promote Alzheimer's disease

May 30, 2011
Researchers pinpoint a small RNA that spurs cells to manufacture a particular splice variant of a key neuronal protein, potentially promoting Alzheimer's disease (AD) or other types of neurodegeneration. The study appears ...

Recommended for you

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.