Scientists shine a light on the detection of bacterial infection

September 15, 2011, University of Sheffield

Researchers at the University of Sheffield have developed polymers that fluoresce in the presence of bacteria, paving the way for the rapid detection and assessment of wound infection using ultra-violet light.

When contained in a gel and applied to a wound, the level of fluorescence detected will alert clinicians to the severity of infection. The polymers are irreversibly attached to fragments of , which bind to either gram negative or gram positive bacteria – both of which cause very serious infections – informing clinicians as to whether to use antibiotics or not, and the most appropriate type of antibiotic treatment to prescribe. The team also found that they could use the same gels to remove the bacteria from infected wounds in tissue engineered human skin.

Speaking at the British Science Festival today (15 September), Professor Sheila MacNeil, an expert in tissue engineering and wound healing, explains: "The polymers incorporate a fluorescent dye and are engineered to recognise and attach to bacteria, collapsing around them as they do so. This change in shape generates a fluorescent signal that we've been able to detect using a hand-held UV lamp."

"The availability of these gels would help clinicians and wound care nurses to make rapid, informed decisions about wound management, and help reduce the overuse of antibiotics," says project lead Dr Steve Rimmer.

Currently, determining significant levels of bacterial infection involves swabbing the wound and culturing the swabs in a specialist bacteriology laboratory with results taking several days to be available. The team is confident that its technology can ultimately reduce the detection of to within a few hours, or even less.

The research has already demonstrated that the polymer (PNIPAM), modified with an antibiotic (vancomycin) and containing a fluorescent dye (ethidium bromide), shows a clear fluorescent signal when it encounters gram negative bacteria. Other polymers have been shown to respond to S. aureus, a gram positive bacteria. These advances mean that a hand-held sensor device can now be developed to be used in a clinical setting.

The research is the result of a 3-year project which started in 2006, part-funded by the Engineering and Physical Sciences Research Council (EPSRC) and the Defence Science and Technology Laboratory (Dstl) – an agency of the Ministry of Defence, interested in the medical application of the research in battlefield conditions, and a subsequent EPSRC funded PhD studentship.

The team is also investigating whether using a sophisticated technique called 'fluorescence non radiative energy transfer (NRET)' to generate the light signal could enable a highly refined sensor technology that could have applications in other areas.

"For example, we think that NRET could be very useful in an anti-terrorist and public health capacity, detecting pathogen release or bacterial contamination, whether accidental or deliberate," says Dr Rimmer. "NRET also allows us to learn more about how the polymers collapse around the bacteria, which is important in developing our understanding of how bacteria interact with these novel responsive polymers."

The team is interested in talking to potential partners to take this technology forward.

Related Stories

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.