Inner workings of virus responsible for rare skin cancer

September 15, 2011

Scientists at the University of Pittsburgh Cancer Institute have begun to uncover how the virus that causes most Merkel cell carcinoma – a rare and aggressive skin cancer – operates, meaning that a rational chemotherapeutic target for this cancer could be developed in the near future.

Patrick Moore, M.D., M.P.H., an American Cancer Society professor in the laboratory of Yuan Chang and Patrick Moore at the University of Pittsburgh Cancer Institute in Pittsburgh, Pa., presented these study results at the Second AACR International Conference on Frontiers in Basic Cancer Research, held here Sept. 14-18, 2011.

Merkel is a rare and highly aggressive cancer, the incidence of which has increased fourfold during the last 20 years, particularly in immunosuppressed populations, according to Moore.

"Unfortunately, Merkel cell carcinoma is difficult to treat and clinical trials of chemotherapeutics have been disappointing in affecting clinical course and survival," he said. "Discovery of the molecular cause for this cancer provides opportunities to directly target the cellular pathways that are perturbed by the virus."

In 2008, Moore and colleagues discovered Merkel cell polyomavirus (MCV), the virus that causes most Merkel cell carcinoma. Polyoma refers to the ability of some members of this family to produce multiple tumors in animal models. Their laboratory previously discovered the herpes virus that causes Kaposi's sarcoma, cancer that commonly occurs in patients with AIDS.

"MCV is the first polyomavirus to be consistently associated with human cancer, and is believed to cause 80 percent of Merkel cell ," Moore said.

MCV is a natural component of the human skin and is usually harmless, according to Moore. In fact, most adults carry the virus in some part of their skin cells. However, if someone becomes immunodeficient and the virus undergoes specific mutations, then it can generate .

In the three years since they discovered MCV, this group has also discovered several of the unique characteristics of the virus. Most recently, their studies showed that MCV small T antigen protein is a new oncogene that can contribute to abnormal cell growth in both rodent and human cells. In addition, MCV does not act the same as other polyomaviruses that have served as classic models of cancer. These other polyomaviruses depend on viral interaction with the enzyme PP2A and heat-shock proteins; MCV interacts with them, but does not depend on them.

Moore and colleagues found that MCV could still cause the abnormal cell growth even after abolishing PP2A and heat-shock protein binding sites. The researchers hope to develop treatments that will directly target the cellular pathways affected by this .

"We are making headway on this approach now and have tested more than 1,350 drugs to identify better methods to treat this virus-caused ," Moore said.

Explore further: Cancer researchers find key oncoprotein in Merkel cell carcinoma

Related Stories

Cancer researchers find key oncoprotein in Merkel cell carcinoma

August 15, 2011
Researchers at the University of Pittsburgh Cancer Institute (UPCI) have identified the oncoprotein that allows a common and usually harmless virus to transform healthy cells into a rare but deadly skin cancer called Merkel ...

Recommended for you

Study provides insight into link between two rare tumor syndromes

August 22, 2017
UCLA researchers have discovered that timing is everything when it comes to preventing a specific gene mutation in mice from developing rare and fast-growing cancerous tumors, which also affects young children. This mutation ...

Retaining one normal BRCA gene in breast, ovarian cancers influences patient survival

August 22, 2017
Determining which cancer patients are likely to be resistant to initial treatment is a major research effort of oncologists and laboratory scientists. Now, ascertaining who might fall into that category may become a little ...

Study identifies miR122 target sites in liver cancer and links a gene to patient survival

August 22, 2017
A new study of a molecule that regulates liver-cell metabolism and suppresses liver-cancer development shows that the molecule interacts with thousands of genes in liver cells, and that when levels of the molecule go down, ...

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.