New drug targets revealed from giant parasitic worm genome sequence

October 26, 2011

Scientists have identified the genetic blueprint of the giant intestinal roundworm, Ascaris suum, revealing potential targets to control the devastating parasitic disease, ascariasis which affects more than one billion people in China, South East Asia, South America and parts of Africa, killing thousands of people annually and causing chronic effects in young children.

Dr Aaron Jex and Professor Robin Gasser from the University of Melbourne's Faculty of Veterinary Science led the international research project which was published in the journal Nature today.

The work has provided new insights to treat the condition ascariasis, identified by the as a key, neglected disease in urgent need of extensive research and significantly improved control.

"Sequencing the genome of Ascaris suum is a major step towards controlling the infection it causes because the more we know about the genetics of the parasite and how it works, the better we can fight it with novel treatments," Dr Jex said.

"From the we have identified five high priority drug targets that are likely to be relevant for many other . New treatments are urgently needed and genome-guided discovery is ideal for identifying targets that selectively kill the parasite and not the host.

"We also identified key information on how the parasite hides from the immune system, which is essential for any future vaccine development."

The team sequenced the of Ascaris suum which is an easier worm to study in the laboratory and mainly only infects pigs, but is very closely related to Ascaris lumbricoides which causes ascariasis in humans. The worms range from 15-30cm in length and are spread via eggs in contaminated food.

Ascaris lumbricoides is one of the most common parasites of humans, affecting more than one billion people in developing countries, particularly children, causing impaired physical and cognitive development, and in severe cases death, due to lack of nutrient absorption and intestinal blockage.

Ascaris suum also causes major production losses in swine farming due to reduced growth, failure to thrive and mortality.

Explore further: Worm 'cell death' discovery could lead to new drugs for deadly parasite

More information: DOI: 10.1038/nature10553

Related Stories

Worm 'cell death' discovery could lead to new drugs for deadly parasite

September 28, 2011
Researchers from the Walter and Eliza Hall Institute have for the first time identified a 'programmed cell death' pathway in parasitic worms that could one day lead to new treatments for one of the world's most serious and ...

What parasites eat is the key to better drug design

August 4, 2011
A new study has revealed in unprecedented detail how parasites use different nutrients needed for growth, providing University of Melbourne researchers with unique drug targets against Leishmania, a tropical parasite that ...

Scientists identify most proteins made by parasitic worm

May 23, 2011
A team led by Thomas B. Nutman, M.D., of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, has completed a large-scale analysis of most of the proteins produced ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.