Improved method for detecting mutant DNAs

October 11, 2011

Molecular DNA testing methods offer clinicians powerful tools that serve to confirm or identify disease diagnoses. High sensitivity and high specificity, however, are frequently a challenge to achieve with these methods. In a study scheduled for publication in the November issue of The Journal of Molecular Diagnostics, researchers describe a new, robust technique that holds promise for identifying trace mutant DNA sequences (signals) in an overwhelming population of unmutated DNA (noise).

A group of researchers in Korea describe a simple and inexpensive enrichment technique that they have termed mutant enrichment with 3′-modified oligonucleotides (MEMO). This oligonucleotide blocks extension of the normal gene but enables extension of the mutated gene, allowing for increased detection sensitivity.

"The potential applications of MEMO include all situations in which minority alleles of clinical significance are present and sensitive detection is required," commented lead investigators Seung-Tae Lee MD, PhD, and Chang-Seok Ki, MD, PhD, Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. "In addition to the application of MEMO to detect cancer mutations, it can be used in other situations, such as variant strain identification in infectious diseases (for example, the YMDD mutation in hepatitis B virus infection and antiviral drug–resistant variants in human immunodeficiency virus infection), minor mutant allele detection in patients with low-level somatic mosaicism or mitochondrial heteroplasmy, and characterization of fetal mutations from maternal plasma samples."

Using genomic DNA extracted from cancer-derived cell lines containing EGFR, BRAF, JAK2, TP53, or KRAS mutations and from a bone marrow sample containing an NPM1 mutation, the authors were able to demonstrate significant sensitivity to these mutations.

Compared to preexisting methods, MEMO was shown to provide an improved diagnostic performance so that the method can be easily applicable in various medical fields, where molecular assays are important for disease diagnosis or treatment monitoring, and thus may help to improve patient outcomes.

Explore further: Discovery of genetic mutations better diagnose myelodysplastic syndromes

More information: The article is "Mutant Enrichment with 3′-Modified Oligonucleotides (MEMO) - A Practical PCR Method for Detecting Trace Mutant DNAs" by Seung-Tae Lee, Ji-Youn Kim, Min-Jung Kown, Sun Wook Kim, Jae Hoon Chung, Myung-Ju Ahn, Young Lyun Oh, Jong-Won Kim, and Chang-Seok Ki (doi: 10.1016/j.jmoldx.2011.07.003). Published online ahead of its issue, it will appear in The Journal of Molecular Diagnostics, Volume 13, Issue 6 (November 2011)

Related Stories

Discovery of genetic mutations better diagnose myelodysplastic syndromes

June 30, 2011
For patients with myelodysplastic syndromes (MDS), choosing the appropriate treatment depends heavily on the prognosis. Those patients at the highest risk of dying from their disease are typically offered the most aggressive ...

Recommended for you

Link between cells associated with aging and bone loss

August 21, 2017
Mayo Clinic researchers have reported a causal link between senescent cells - the cells associated with aging and age-related disease - and bone loss in mice. Targeting these cells led to an increase in bone mass and strength. ...

Gut microbes may talk to the brain through cortisol

August 21, 2017
Gut microbes have been in the news a lot lately. Recent studies show they can influence human health, behavior, and certain neurological disorders, such as autism. But just how do they communicate with the brain? Results ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.