Workings of molecular motor revealed

October 24, 2011, Oxford University
ATPase protected during its flight into a mass spectrometer by a detergent bubble. Credit: Karl Harrison

(Medical Xpress) -- The structure and function of a ‘molecular motor’ critical to the functioning of human organs and, when malfunctioning, implicated in cancer, kidney failure, and osteoporosis, has been revealed in unprecedented detail.

An international team, led by chemists from Oxford University, has used highly sensitive mass-spectrometry to piece together a picture of how the motor, the energy-converting protein adenosine triphosphate (ATP) synthase, interacts with the fatty acids that form the membranes around our cells.

The team publish a report of the research in this week’s Science.

"ATP synthase is found in every cell in our bodies and generates the energy necessary to keep our organs working," said Professor Carol Robinson of Oxford University’s Department of Chemistry, an author of the paper. "Our team were able to effectively ‘weigh’ this molecular motor and calculate the exact weight of the fatty acids – that act rather like a ‘lubricant’ for the motor – that are attached to it."

The researchers probed ATP synthase and its various component parts by stimulating it with high pH and different levels of ATP and Adenosine diphosphate (ADP). They were then able to watch how the different parts of this responded and interacted in the kind of detail nobody has seen before

The team believe their discovery will be extremely important for future research into a wide range of diseases in which defects in such energy-converting machinery plays a part.

Professor Robinson said: "Overall this research has not only contributed to our understanding of this cellular motor but also highlights opportunities to explore the effects of inhibitors that could one day help in the treatment of many conditions."

More information: A report of the research, 'Mass Spectrometry of Intact V-Type ATPases Reveals Bound Lipids and the Effects of Nucleotide Binding', is published in the 21 October issue of Science.

Related Stories

Recommended for you

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.