Researchers make neurological disease breakthrough

October 7, 2011 By William G. Gilroy, University of Notre Dame

(Medical Xpress) -- Results of a study by a group of University of Notre Dame researchers represent a promising step on the road to developing new drugs for a variety of neurological diseases.

The group from the University’s Departments of Chemistry and Biochemistry and Biological Sciences and the Freimann Life Sciences Center focused on the design, synthesis and evaluation of water-soluble “gelatinase inhibitor” compounds.

Gelatinases, a class of enzymes, have been implicated in a host of human diseases from cancer to cardiovascular conditions and in particular neurological conditions such as stroke, aneurysm and traumatic brain injury. Researchers have increasingly focused on developing potent gelatinase inhibitor drugs to treat acute gelatinase-dependent diseases.

The Notre Dame group has been investigating variants of a compound called “SB-3CT,” which shows promise as a selective and potent gelatinase inhibitor. SB-3CT has exhibited potent efficacy in animal models for a variety of neurological and cancer diseases.

The preferred method of treatment for acute gelatinase-dependent diseases is intravenous infusion. Intravenous administration requires that the compound be water soluble. Unfortunately SB-3CT has poor water solubility and poor drug-like properties.

In a new approach, the Notre Dame researchers used a prodrug strategy to address this issue. A prodrug is an inactive precursor of a drug that is converted into its active form in the body by normal metabolic processes.

The prodrug strategy produced a greater than 5,000-fold increase in water solubility compared to SB-3CT. In addition to its high water solubility, the prodrug (referred to as ND-478) was chemically stable, non-toxic and was quickly converted to the active drug in the blood. These favorable properties of ND-478 make it suitable for intravenous administration in the treatment of acute gelatinase-dependent diseases. Such a compound offers the possibility of translation into the clinic for treatment of strokes, aneurysms and traumatic brain injury.

The Notre Dame research team included Mayland Chang, Shahriar Mobashery, Major Gooyit, Mijoon Lee, Valerie A. Schroeder, Masahiro Ikerjiri and Mark Suckow. Their paper appears in the Journal of Medical Chemistry.

Explore further: Scientists develop algorithm to understand certain human diseases

Related Stories

Scientists develop algorithm to understand certain human diseases

June 16, 2011
(Medical Xpress) -- Patricia Clark, the Rev. John Cardinal O’Hara, C.S.C. Associate Professor of Chemistry and Biochemistry at the University of Notre Dame, and Bonnie Berger, professor of applied mathematics at the ...

Researchers engineer new way to inhibit allergic reactions without side effects

October 7, 2011
(Medical Xpress) -- Researchers from the University of Notre Dame have announced a breakthrough approach to allergy treatment that inhibits food allergies, drug allergies and asthmatic reactions without suppressing a sufferer’s ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.