Student team's glucose sensor uses DNA instead of chemicals

December 28, 2011
Biological sciences students Erica Shannon, left, and Amanda Foster are among the members of Missouri S&T's iGEM chapter. The group developed a biological system to detect glucose levels, a process that could one day help people with diabetes.

People with diabetes may one day have a less expensive resource for monitoring their blood glucose levels, if research by a group of Missouri University of Science and Technology students becomes reality.

Members of the Missouri S&T chapter of iGEM - the International Genetically Engineered Machine Foundation - recently devised a biological system that uses segments of DNA embedded in bacteria to detect glucose. The students believe their development could lead to a new type of test strip for diabetics.

"We designed DNA so that bacteria that have DNA would sense a change in osmolarity due to the presence of glucose," says Erica Shannon of Wildwood, Mo., a senior in biological sciences at Missouri S&T and president of the campus's iGEM chapter. Osmolarity refers to the concentration of a compound - in this case, glucose - in a solution.

For their project, the students designed genes that allow the bacteria - a non-virulent strain of E. coli - to sense the presence of the simple sugar glucose. The bacteria emit a yellow glow when glucose is present. As glucose concentrations become higher, the glow becomes brighter.

The team developed the system as part of an annual competition sponsored by iGEM, the Americas Regional Jamboree, held Oct. 8-10, 2011, in Indianapolis. S&T's iGEM chapter received a silver medal for their effort.

According to Shannon, her team's biological system could form the basis for new, less costly processes to help people with diabetes monitor their blood-sugar levels. It would require replacing the fluorescent gene with one that would cause the bacteria to change color based on . This in turn could lead to the development of blood-test strips that could indicate glucose levels based on various colors. For example, a test strip might turn green if glucose levels are within normal ranges, yellow if borderline and red if elevated.

"All you would have to do is put the DNA inside a and you've got your test strip," says Shannon.

Bacteria-based test strips would also be less expensive to make than current chemical-based test strips, Shannon says.

"In the future, based on further research, an insulin gene could be added to this system for use in insulin pumps, where specific glucose levels trigger insulin production," she says.

The team advisors are Dr. David Westenberg and Dr. Katie Shannon, both associate professors of biological sciences at Missouri S&T.

Explore further: Team identifies key protein causing excess liver production of glucose in diabetes

Related Stories

Team identifies key protein causing excess liver production of glucose in diabetes

September 28, 2011
Researchers at the John G. Rangos Sr. Research Center at Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine have identified a powerful molecular pathway that regulates the liver's ...

Keeping pets sweet: Treating diabetes in dogs

September 23, 2011
Diabetes affects not only humans but also animals. As in humans treatment should be based on an understanding of natural fluctuations in blood glucose levels but these are hard to determine. Researchers at the University ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.