'Open-source' robotic surgery platform going to top medical research labs

January 12, 2012, University of California - Santa Cruz

Robotics experts at the University of California, Santa Cruz and the University of Washington (UW) have completed a set of seven advanced robotic surgery systems for use by major medical research laboratories throughout the United States. After a round of final tests, five of the systems will be shipped to medical robotics researchers at Harvard University, Johns Hopkins University, University of Nebraska, UC Berkeley, and UCLA, while the other two systems will remain at UC Santa Cruz and UW.

"We decided to follow an open-source model, because if all of these labs have a common research platform for doing robotic surgery, the whole field will be able to advance more quickly," said Jacob Rosen, associate professor of computer engineering in the Baskin School of Engineering at UC Santa Cruz and principal investigator on the project.

Rosen and Blake Hannaford, director of the UW Biorobotics Laboratory, lead the research groups that developed the Raven II robotic surgery system and its predecessor, Raven I. A grant from the National Science Foundation funded their work to create seven identical Raven II systems. Hannaford said the systems will be shipped out from UW by the end of January. After they are delivered and installed, all seven systems will be networked together over the Internet for collaborative experiments.

Robotic surgery has the potential to enable new surgical procedures that are less invasive than existing techniques. For some procedures, such as prostate surgery, the use of surgical robots is already standard practice. In addition, telesurgery, in which the surgeon operates a robotic system from a remote location, offers the potential to provide better access to expert care in remote areas and the developing world. Having a network of laboratories working on a common platform will make it easier for researchers to share software, replicate experiments, and collaborate in other ways.

Even though it meant giving competing laboratories the tools that had taken them years to develop, Rosen and Hannaford decided to share the Raven II because it seemed like the best way to move the field forward. "These are the leading labs in the nation in the field of surgical robotics, and with everyone working on the same platform we can more easily share new developments and innovations," Hannaford said.

According to Rosen, most research on surgical robotics in the United States has focused on developing new software for various commercially available robotic systems. "Academic researchers have had limited access to these proprietary systems. We are changing that by providing high-quality hardware developed within academia. Each lab will start with an identical, fully-operational system, but they can change the hardware and software and share new developments and algorithms, while retaining intellectual property rights for their own innovations," Rosen said.

The Raven II includes a surgical robot with two robotic arms, a camera for viewing the operational field, and a surgeon-interface system for remote operation of the robot. The system is powerful and precise enough to support research on advanced techniques, including online telesurgery.

In addition to Rosen and Hannaford, UCSC postdoctoral researchers Daniel Glozman and Ji Ma, along with a group of dedicated undergraduate students working in Rosen's Bionics Lab, played a key role in developing the Raven II. Rosen and Glozman have also developed a Raven IV surgical robotics system, which includes four robotic arms and two cameras. The system enables collaboration between two surgeons working from separate locations and connected over the Internet.

Explore further: Robotic surgery with one small incision

Related Stories

Robotic surgery with one small incision

December 22, 2011
On Tuesday (Dec. 20), Dr. Santiago Horgan, chief of minimally invasive surgery at UC San Diego Health System, was the first surgeon in the United States to remove a diseased gallbladder through a patient’s belly button ...

Recommended for you

Best of Last Year—The top Medical Xpress articles of 2017

December 20, 2017
It was a good year for medical research as a team at the German center for Neurodegenerative Diseases, Magdeburg, found that dancing can reverse the signs of aging in the brain. Any exercise helps, the team found, but dancing ...

Pickled in 'cognac', Chopin's heart gives up its secrets

November 26, 2017
The heart of Frederic Chopin, among the world's most cherished musical virtuosos, may finally have given up the cause of his untimely death.

Sugar industry withheld evidence of sucrose's health effects nearly 50 years ago

November 21, 2017
A U.S. sugar industry trade group appears to have pulled the plug on a study that was producing animal evidence linking sucrose to disease nearly 50 years ago, researchers argue in a paper publishing on November 21 in the ...

Female researchers pay more attention to sex and gender in medicine

November 7, 2017
When women participate in a medical research paper, that research is more likely to take into account the differences between the way men and women react to diseases and treatments, according to a new study by Stanford researchers.

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.