Hopes for reversing age-associated effects in MS patients

January 6, 2012

New research highlights the possibility of reversing ageing in the central nervous system for multiple sclerosis (MS) patients. The study is published today, 06 January, in the journal Cell Stem Cell.

As we get older, our bodies' ability to regenerate decreases. This is not only true for our skin (which is evident in the wrinkles that develop as we age) but also true for other tissues in the body, including the regenerative processes in the brain. For diseases which often span several decades and are affected by regenerative processes, such as multiple sclerosis, this can have massive implications.

In , the insulating layers that protect in the brain, known as myelin sheaths, become damaged. The loss of myelin in the brain prevents nerve fibres from sending signals properly and will eventually lead to the loss of the nerve fibre itself. However, early in the disease, a regenerative process, or remyelination, occurs and the myelin sheaths are restored. Unfortunately, as people with MS age, remyelination decreases significantly, resulting in more nerve fibres being permanently lost.

However, a new study in mice shows that the age-associated decline in the regeneration of the nerve's , or remyelination, is reversible. The proof of principle study demonstrates that when old mice are exposed to the (called monocytes) from young mice, the ageing remyelination process can be reversed.

Professor Robin Franklin, Director of the MS Society's Cambridge Centre for Myelin Repair at the University of Cambridge, said: "What we have shown in our study, carried out in collaboration with Dr Amy Wagers and colleagues at Harvard University, is that the age-associated decline in remyelination is reversible. We found that remyelination in old can be made to work as efficiently as it does in young adult mice.

"For individuals with MS, this means that in theory regenerative therapies will work throughout the duration of the disease. Specifically, it means that remyelination therapies do not need to be based on stem cell transplantation since the stem cells already present in the brain and spinal cord can be made to regenerate myelin - regardless of the patient's age."

MS affects approximately 100,000 people in the United Kingdom, 400,000 in the United States and several million worldwide. Symptoms of the disease can include the loss of physical skills, sensation, vision, bladder control, and intellectual abilities.

More information: The paper 'Rejuvenation of regeneration in the aging central nervous system' will be published in the 06 January edition of Cell Stem Cell.

Related Stories

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.