Metabolic 'breathalyzer' reveals early signs of disease

February 6, 2012, University of Wisconsin-Madison

The future of disease diagnosis may lie in a "breathalyzer"-like technology currently under development at the University of Wisconsin-Madison.

New research published online in February in the peer-reviewed journal Metabolism demonstrates a simple but sensitive method that can distinguish normal and disease-state by a quick assay of blood or exhaled air.

Many diseases, including , cancer, and infections, alter the body's metabolism in distinctive ways. The new work shows that these biochemical changes can be detected much sooner than typical symptoms would appear – even within a few hours – offering hope of early disease detection and diagnosis.

"With this methodology, we have advanced methods for tracing metabolic pathways that are perturbed in disease," says senior author Fariba Assadi-Porter, a UW-Madison biochemist and scientist at the Nuclear Magnetic Resonance Facility at Madison. "It's a cheaper, faster, and more sensitive method of diagnosis."

The researchers studied mice with metabolic symptoms similar to those seen in women with polycystic ovary syndrome (PCOS), an endocrine disorder that can cause a wide range of symptoms including infertility, ovarian cysts, and metabolic dysfunction. PCOS affects approximately 1 in 10 women but currently can only be diagnosed after puberty and by exclusion of all other likely diseases – a time-consuming and frustrating process for patients and doctors alike.

"The goal is to find a better way of diagnosing these women early on, before puberty, when the disease can be controlled by medication or exercise and diet, and to prevent these women from getting metabolic syndromes like diabetes, obesity, and associated problems like heart disease," Assadi-Porter says.

The researchers were able to detect distinct metabolic changes in the mice by measuring the isotopic signatures of carbon-containing metabolic byproducts in the blood or breath. They injected glucose containing a single atom of the heavier isotope carbon-13 to trace which metabolic pathways were most active in the sick or healthy mice. Within minutes, they could measure changes in the ratio of carbon-12 to carbon-13 in the carbon dioxide exhaled by the mice, says co-author Warren Porter, a UW-Madison professor of zoology.

One advantage of the approach is that it surveys the workings of the entire body with a single measure. In addition to simplifying diagnosis, it could also provide rapid feedback about the effectiveness of treatments.

"The pattern of these ratios in blood or breath is different for different diseases – for example , diabetes, or obesity – which makes this applicable to a wide range of diseases," explains Assadi-Porter.

The technology relies on the fact that the body uses different sources to produce energy under different conditions. "Your body changes its fuel source. When we're healthy we use the food that we eat," Porter says. "When we get sick, the immune system takes over the body and starts tearing apart proteins to make antibodies and use them as an energy source."

That shift from sugars to proteins engages different biochemical pathways in the body, resulting in distinct changes in the carbon isotopes that show up in exhaled carbon dioxide. If detected quickly, these changes may signal the earliest stages of disease.

The researchers found similar patterns using two independent assays – nuclear magnetic resonance spectroscopy on blood serum and cavity ring-down spectroscopy on exhaled breath. The breath-based method is particularly exciting, they say, because it is non-invasive and even more sensitive than the blood-based assays.

In the mice, the techniques were sensitive enough to detect statistically significant differences between even very small populations of healthy and sick mice.

The current cavity ring-down spectroscopy analysis uses a machine about the size of a shoebox, but the researchers envision a small, hand-held "" that could easily be taken into rural or remote areas. They co-founded a company, Isomark, LLC, to develop the technology and its applications. They hope to explore the underlying biology of disease and better understand whether the distinctive they can observe are causative or side effects.

Explore further: A breath of fresh air for detecting vitamin B12 deficiency

More information: dx.doi.org/10.1016/j.metabol.2011.12.010

Related Stories

A breath of fresh air for detecting vitamin B12 deficiency

June 23, 2011
Researchers have developed a new test to detect the levels of vitamin B12 using your breath, allowing for a cheaper, faster, and simpler diagnosis that could help to avoid the potentially fatal symptoms of B12 deficiency.

Omega-3 key in reducing diabetes and heart disease

October 31, 2011
(Medical Xpress) -- Omega-3 can help to reduce the risk of diabetes and heart disease especially as people age, says Massey University nutrition professor Bernhard Breier, co-author of a new international study.

Cell dysfunction linked to obesity and metabolic disorders

September 26, 2011
By measuring the radioactive isotope carbon-14, scientists at Karolinska Institutet have revealed an association between lipid cell dysfunction and diseases such as obesity, diabetes and blood lipid disorders. The study, ...

Recommended for you

Past encounters with the flu shape vaccine response

February 20, 2018
New research on why the influenza vaccine was only modestly effective in recent years shows that immune history with the flu influences a person's response to the vaccine.

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

Study suggests expanded range for emerging tick-borne disease

February 16, 2018
Human cases of Borrelia miyamotoi, a tick-borne infection with some similarities to Lyme disease, were discovered in the eastern United States less than a decade ago. Now new research led by the Yale School of Public Health ...

Expanding Hepatitis C testing to all adults is cost-effective and improves outcomes

February 16, 2018
According to a new study, screening all adults for hepatitis C (HCV) is a cost-effective way to improve clinical outcomes of HCV and identify more infected people compared to current recommendations. Using a simulation model, ...

Flu shot only 36 percent effective, making bad year worse (Update)

February 15, 2018
The flu vaccine is doing a poor job protecting older Americans and others against the bug that's causing most illnesses.

IFN-mediated immunity to influenza A virus infection influenced by RIPK3 protein

February 15, 2018
Each year, influenza kills half a million people globally with the elderly and very young most often the victims. In fact, the Centers for Disease Control and Prevention reported 37 children have died in the United States ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.