New research characterizes glaucoma as neurologic disorder rather than eye disease

March 7, 2012

A new paradigm to explain glaucoma is rapidly emerging, and it is generating brain-based treatment advances that may ultimately vanquish the disease known as the "sneak thief of sight." A review now available in Ophthalmology, the journal of the American Academy of Ophthalmology, reports that some top researchers no longer think of glaucoma solely as an eye disease. Instead, they view it as a neurologic disorder that causes nerve cells in the brain to degenerate and die, similar to what occurs in Parkinson disease and in Alzheimer's. The review, led by Jeffrey L Goldberg, M.D., Ph.D., assistant professor of ophthalmology at the Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, describes treatment advances that are either being tested in patients or are scheduled to begin clinical trials soon.

Glaucoma is the most common cause of irreversible blindness worldwide. For many years, the prevailing theory was that vision damage in patients was caused by abnormally high pressure inside the eye, known as (IOP). As a result, lowering IOP was the only goal of those who developed surgical techniques and medications to treat glaucoma. Creating tests and instruments to measure and track IOP was crucial to that effort. Today, a patient's IOP is no longer the only measurement an uses to diagnose glaucoma, although it is still a key part of deciding how to care for the patient. IOP-lowering medications and surgical techniques continue to be effective ways to protect glaucoma patients' eyes and vision. Tracking changes in IOP over time informs the doctor whether the treatment plan is working.

But even when surgery or medication successfully lowers IOP, continues in some glaucoma patients. Also, some patients find it difficult to use eye drop medications as prescribed by their physicians. These significant shortcomings spurred researchers to look beyond IOP as a cause of glaucoma and focus of treatment.

The new research paradigm focuses on the damage that occurs in a type of nerve cell called retinal ganglion cells (RGCs), which are vital to the ability to see. These cells connect the eye to the brain through the optic nerve.

RGC-targeted glaucoma treatments now in clinical trials include: medications injected into the eye that deliver survival and growth factors to RGCs; medications known to be useful for stroke and Alzheimer's, such as cytidine-5-diphosphocholine; and electrical stimulation of RGCs, delivered via tiny electrodes implanted in contact lenses or other external devices. Human trials of stem cell therapies are in the planning stages.

"As researchers turn their attention to the mechanisms that cause retinal ganglion cells to degenerate and die, they are discovering ways to protect, enhance and even regenerate these vital cells," said Dr. Goldberg. "Understanding how to prevent damage and improve healthy function in these neurons may ultimately lead to sight-saving treatments for glaucoma and other degenerative eye diseases."

If this neurologically-based research succeeds, future glaucoma treatments may not only prevent glaucoma from stealing patients' eyesight, but may actually restore vision. Scientists also hope that their in-depth exploration of RGCs will help them determine what factors, such as genetics, make some people more vulnerable to glaucoma.

Explore further: Research identifies risk factors associated with progression of glaucoma

Related Stories

Research identifies risk factors associated with progression of glaucoma

May 9, 2011
Elevated pressure inside the eye, cornea thinning, and visual field loss are all markers that glaucoma may progress, according to a report in the May issue of Archives of Ophthalmology.

British study may improve glaucoma assessment and treatment

October 24, 2011
Results from a recent scientific study in the U.K. may change the way that healthcare professionals measure eye pressure and allow them to assess the risk of glaucoma with greater accuracy. Glaucoma is the second most common ...

Recommended for you

Simulations signal early success for fractal-based retinal implants

July 27, 2017
Computer simulations of electrical charges sent to retinal implants based on fractal geometry have University of Oregon researchers moving forward with their eyes focused on biological testing.

Scientists regenerate retinal cells in mice

July 26, 2017
Scientists have successfully regenerated cells in the retina of adult mice at the University of Washington School of Medicine in Seattle.

Genome editing with CRISPR-Cas9 prevents angiogenesis of the retina

July 24, 2017
A research team from the Schepens Eye Research Institute of Massachusetts Eye and Ear has successfully prevented mice from developing angiogenesis of the retina—the sensory tissue at the back of the eye—using gene-editing ...

Too little vitamin D may hinder recovery of injured corneas

July 24, 2017
Injury or disease in combination with too little vitamin D can be bad for the window to your eyes.

Combination of type 2 diabetes and sleep apnoea indicates eyesight loss within four years

July 4, 2017
Research led by the University of Birmingham has discovered that patients who suffer from both Type 2 diabetes and obstructive sleep apnoea are at greater risk of developing a condition that leads to blindness within an average ...

Nearly 60% of pinkeye patients receive antibiotic eye drops, but they're seldom necessary

June 28, 2017
A new study suggests that most people with acute conjunctivitis, or pinkeye, are getting the wrong treatment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.