From mouse to man: Circadian nitrogen balance impacts survival and susceptibility to common diseases

March 6, 2012, Case Western Reserve University

Researchers at Case Western Reserve University School of Medicine demonstrated that nitrogen balance, the process of utilizing amino acids and disposing of their toxic byproducts, occurs with a precise 24-hour rhythm – also known as circadian rhythm – in mammals. Disruption of this cycle has a direct impact on survival of organisms, and may predispose one to life altering diseases including diabetes and cardiovascular disease.

The study led by Darwin Jeyaraj, MD, MRCP, assistant professor of medicine at Case Western Reserve School of Medicine and cardiologist at Harrington Heart & Vascular Institute at University Hospitals Case Medical Center, who works in the laboratory of Mukesh Jain, MD, FAHA, professor of medicine, Ellery Sedgwick Jr. Chair, and director, Case Cardiovascular Research Institute at Case Western Reserve School of Medicine and the chief research officer, Harrington Heart & Vascular Institute at University Hospitals Case Medical Center, discovered that the KLF15 gene as a singular factor could control the entire process of nitrogen balance in mammals. This discovery was published in .

In mammals, the nutrient that is at a premium is glucose. This is because the brain and red blood cells can only burn glucose to sustain their energy, whereas the capacity of the organisms to store glucose is limited to a few hours. Thus, during periods of fasting, like daily sleep, mammals need an alternative way to synthesize glucose to keep the brain functioning properly.

To overcome this daily challenge, glucose is generated by the breakdown of amino acids stored in skeletal muscles, and then transported to the liver. Another component of amino acids, not required for glucose production, is nitrogen. Excess nitrogen can be toxic and thus the byproduct must be disposed of by the liver.

"If mammals did not have the ability to adapt in this way, the very survival of the species would be threatened," Dr. Jain says.

The investigators found that levels of KLF15, short for Kruppel-like factor 15, change during the day, with peaks during periods of starvation. The team also found that KLF15 cyclically regulated expression of key enzymes involved in amino acid consumption, glucose production, and nitrogen disposal in the skeletal muscle and liver.

Animals lacking KLF15 developed low blood glucose levels and high ammonia levels. Over time, the abnormal levels in KLF15-deficient animals led to alterations in brain function.

"Current literature portrays amino acids as nutrients that are in a constant state in mammalian organisms," Dr. Jeyaraj, the lead author of this work, notes. "In contrast, our work in mice and humans identify nitrogen balance is a dynamic process and follows circadian variation."

"Importantly, we identify KLF15 as the missing molecular link between the biological clock and this process. The cyclical variations in discovered by our team have far-reaching implications for many fields in medicine. For example in current medical practice we are frequently measuring glucose and lipid levels. Should we be measuring amino acids to guide clinical diagnosis or predict prognosis is an important question that is currently in evaluation" Jeyaraj continues .

Indeed, these findings dovetail well with recent observations in human subjects. "Over the past several years, there has been an explosion of data from investigators at Duke and Harvard University suggesting that dys-regulation of amino acids (especially branched chain ) and urea metabolites, byproducts of nitrogen detoxification, are associated with cardiovascular and metabolic disease," Dr. Jain explains.

These observations in humans are particularly interesting in light of a 2010 study in Science Translational Medicine from the Jain laboratory revealing that KLF15-deficient mice are susceptible to cardiovascular disease and heart failure. Furthermore, in a recent paper published in Nature, the same group reported that deficiency or excess of KLF15 causes electrical instability in the heart.

These findings, along with the observations in human subjects, suggest that disruptions in the circadian cycle of nitrogen homeostasis may predispose patients to cardiovascular disease and metabolic anomalies.

Dr. Jain adds, "Remember that people with altered circadian rhythms, such as nightshift workers, are also predisposed to diabetes and cardiovascular disease. We do not know if KLF15 is involved but it is an intriguing possibility."

As a continuation of this research, Dr. Jain developed a method to detect mutations in KLF15 that may contribute to patients with metabolic or cardiovascular diseases. He is currently initiating efforts to identify chemical compounds for gene therapy that will allow one to manipulate KLF15 levels.

Explore further: Research links circadian rhythms to sudden cardiac death

Related Stories

Research links circadian rhythms to sudden cardiac death

February 22, 2012
A fundamental discovery reported in the March 1st issue of the journal Nature, uncovers the first molecular evidence linking the body's natural circadian rhythms to sudden cardiac death (SCD). Ventricular arrhythmias, or ...

Genetic factor controls health-harming inflammation in obese

June 13, 2011
Researchers at Case Western Reserve University School of Medicine have discovered a genetic factor that can regulate obesity-induced inflammation that contributes to chronic health problems.

Team identifies key protein causing excess liver production of glucose in diabetes

September 28, 2011
Researchers at the John G. Rangos Sr. Research Center at Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine have identified a powerful molecular pathway that regulates the liver's ...

Recommended for you

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Scientists grow functioning human neural networks in 3-D from stem cells

October 18, 2018
A team of Tufts University-led researchers has developed three-dimensional (3-D) human tissue culture models for the central nervous system that mimic structural and functional features of the brain and demonstrate neural ...

Functional engineered oesophagus could pave way for clinical trials 

October 18, 2018
The world's first functional oesophagus engineered from stem cells has been grown and successfully transplanted into mice, as part of a pioneering new study led by UCL.

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.