From mouse to man: Circadian nitrogen balance impacts survival and susceptibility to common diseases

March 6, 2012

Researchers at Case Western Reserve University School of Medicine demonstrated that nitrogen balance, the process of utilizing amino acids and disposing of their toxic byproducts, occurs with a precise 24-hour rhythm – also known as circadian rhythm – in mammals. Disruption of this cycle has a direct impact on survival of organisms, and may predispose one to life altering diseases including diabetes and cardiovascular disease.

The study led by Darwin Jeyaraj, MD, MRCP, assistant professor of medicine at Case Western Reserve School of Medicine and cardiologist at Harrington Heart & Vascular Institute at University Hospitals Case Medical Center, who works in the laboratory of Mukesh Jain, MD, FAHA, professor of medicine, Ellery Sedgwick Jr. Chair, and director, Case Cardiovascular Research Institute at Case Western Reserve School of Medicine and the chief research officer, Harrington Heart & Vascular Institute at University Hospitals Case Medical Center, discovered that the KLF15 gene as a singular factor could control the entire process of nitrogen balance in mammals. This discovery was published in .

In mammals, the nutrient that is at a premium is glucose. This is because the brain and red blood cells can only burn glucose to sustain their energy, whereas the capacity of the organisms to store glucose is limited to a few hours. Thus, during periods of fasting, like daily sleep, mammals need an alternative way to synthesize glucose to keep the brain functioning properly.

To overcome this daily challenge, glucose is generated by the breakdown of amino acids stored in skeletal muscles, and then transported to the liver. Another component of amino acids, not required for glucose production, is nitrogen. Excess nitrogen can be toxic and thus the byproduct must be disposed of by the liver.

"If mammals did not have the ability to adapt in this way, the very survival of the species would be threatened," Dr. Jain says.

The investigators found that levels of KLF15, short for Kruppel-like factor 15, change during the day, with peaks during periods of starvation. The team also found that KLF15 cyclically regulated expression of key enzymes involved in amino acid consumption, glucose production, and nitrogen disposal in the skeletal muscle and liver.

Animals lacking KLF15 developed low blood glucose levels and high ammonia levels. Over time, the abnormal levels in KLF15-deficient animals led to alterations in brain function.

"Current literature portrays amino acids as nutrients that are in a constant state in mammalian organisms," Dr. Jeyaraj, the lead author of this work, notes. "In contrast, our work in mice and humans identify nitrogen balance is a dynamic process and follows circadian variation."

"Importantly, we identify KLF15 as the missing molecular link between the biological clock and this process. The cyclical variations in discovered by our team have far-reaching implications for many fields in medicine. For example in current medical practice we are frequently measuring glucose and lipid levels. Should we be measuring amino acids to guide clinical diagnosis or predict prognosis is an important question that is currently in evaluation" Jeyaraj continues .

Indeed, these findings dovetail well with recent observations in human subjects. "Over the past several years, there has been an explosion of data from investigators at Duke and Harvard University suggesting that dys-regulation of amino acids (especially branched chain ) and urea metabolites, byproducts of nitrogen detoxification, are associated with cardiovascular and metabolic disease," Dr. Jain explains.

These observations in humans are particularly interesting in light of a 2010 study in Science Translational Medicine from the Jain laboratory revealing that KLF15-deficient mice are susceptible to cardiovascular disease and heart failure. Furthermore, in a recent paper published in Nature, the same group reported that deficiency or excess of KLF15 causes electrical instability in the heart.

These findings, along with the observations in human subjects, suggest that disruptions in the circadian cycle of nitrogen homeostasis may predispose patients to cardiovascular disease and metabolic anomalies.

Dr. Jain adds, "Remember that people with altered circadian rhythms, such as nightshift workers, are also predisposed to diabetes and cardiovascular disease. We do not know if KLF15 is involved but it is an intriguing possibility."

As a continuation of this research, Dr. Jain developed a method to detect mutations in KLF15 that may contribute to patients with metabolic or cardiovascular diseases. He is currently initiating efforts to identify chemical compounds for gene therapy that will allow one to manipulate KLF15 levels.

Explore further: Research links circadian rhythms to sudden cardiac death

Related Stories

Research links circadian rhythms to sudden cardiac death

February 22, 2012
A fundamental discovery reported in the March 1st issue of the journal Nature, uncovers the first molecular evidence linking the body's natural circadian rhythms to sudden cardiac death (SCD). Ventricular arrhythmias, or ...

Genetic factor controls health-harming inflammation in obese

June 13, 2011
Researchers at Case Western Reserve University School of Medicine have discovered a genetic factor that can regulate obesity-induced inflammation that contributes to chronic health problems.

Team identifies key protein causing excess liver production of glucose in diabetes

September 28, 2011
Researchers at the John G. Rangos Sr. Research Center at Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine have identified a powerful molecular pathway that regulates the liver's ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.