Gut organisms could be clue in controlling obesity risk

April 23, 2012

The international obesity epidemic is widespread, nondiscriminatory, and deadly. But do we really understand all of the factors underlying this alarming trend? The concept of energy balance (energy consumed = energy expended + energy stored) is undeniable, being driven by the first law of thermodynamics. Consequently, there is no contradiction that excessive calorie intake and plummeting levels of physical activity are largely to blame for our ever-expanding waistlines. However, scientists remain baffled as to why some individuals are particularly prone to becoming obese and if there is anything aside from lowering calorie consumption and increasing activity levels that can be done to prevent and/or reverse excessive weight gain in our most at-risk populations.

Physiologists have long known that our intestines are brimming with live bacteria, some of which provide important substances (e.g., vitamin B-12) to their host. However, research conducted over the last decade suggests that these organisms, often referred to as intestinal microbiota, may play a far greater role in human health than previously imagined. One area of intense interest is the possibility that the mix of with which we are endowed might directly influence our risk for obesity. Obese individuals tend to have different microbial profiles in their intestines than lean individuals, and scientists have learned that the bacteria common to obesity may metabolize the food we eat in a way that allows us to harvest more calories from it and deposit those calories as fat.

To determine whether altering one's bacterial profile can change obesity risk, researchers from the French Institute for Agricultural Research (INRA) transferred the intestinal bacteria of obesity-prone or obesity-resistant rats into the intestinal tracts of germ-free mice recipients, therefore having no innate gut microbiota. Some animals were fed a regular diet, whereas others were provided unlimited access to a high-fat diet. Food intake and weight gain were monitored for 8 weeks, and intestinal samples were analyzed for a variety of physiologic markers of metabolism and normal feedback mechanisms known to play a role in maintenance of .

As hypothesized, mice that received intestinal bacteria from obesity-prone animals ate more food, gained more weight, and became more obese than those receiving microbiota from obesity-resistant animals. Animals with microbiota transferred from obesity-prone animals also exhibited changes in intestinal nutrient sensors and gut peptide levels, likely influencing how the animals responded to eating.

The authors' conclusions are three-fold. First, they theorize that , when given the opportunity to overeat, may harbor specific gut microbiota profiles that promote excess weight gain. Second, they propose that differences in gut microbes can be related to behavioral changes and increased food intake. Finally, they believe that the mix of microbiota you have may influence your ability to properly sense and respond to a meal. They hope to eventually find ways to manipulate the intestinal profiles of especially at-risk individuals so that they can more easily maintain a healthy body weight.

As part of the scientific program of the American Society for Nutrition, the nation's leading nutrition research society, results from this study will be presented on April 23, 2012 in San Diego, CA.

Explore further: Gut microbiota transplantation may prevent development of diabetes and fatty liver disease

Related Stories

Gut microbiota transplantation may prevent development of diabetes and fatty liver disease

April 19, 2012
Exciting new data presented today at the International Liver Congress 2012 shows the gut microbiota's causal role in the development of diabetes and non-alcoholic fatty liver disease (NAFLD), independent of obesity.(1) Though ...

The body's bacteria affect intestinal blood vessel formation

March 26, 2012
Researchers at the Sahlgrenska Academy at the University of Gothenburg, Sweden, have discovered a previously unknown mechanism which helps intestinal bacteria to affect the formation of blood vessels. The results, which are ...

Gut microbiota regulates bile acid metabolism

April 19, 2012
A new study presented today at the International Liver Congress 2012 demonstrates that the gut microbiota has a profound systemic effect on bile acid metabolism.

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.