BIND presents late-breaker clinical data at AACR on BIND-014's promising antitumor effects

April 4, 2012

BIND Biosciences, a clinical-stage biopharmaceutical company developing a new class of highly selective targeted therapeutics called AccurinsTM, announced today the presentation of late-breaker clinical data for BIND-014, the lead drug candidate within a new class of targeted therapeutics that are programmed to concentrate at tumors, at the American Association for Cancer Research (AACR) 2012 Annual Meeting. BIND presented data from the ongoing Phase 1 clinical study of BIND-014, its targeted docetaxel Accurin, in patients with solid tumors that strongly translated from preclinical data, demonstrated safety and tolerability, and showed evidence of anti-tumor activity with six of 17 patients with advanced or metastatic solid tumor cancers. The preliminary Phase 1 data demonstrated partial response or stable disease in this heavily pretreated patient population with durable responses of up to six months in some cases. In addition, BIND-014 demonstrated evidence of anti-tumor activity in tumors for which conventional docetaxel is known to have minimal activity.

BIND-014 represents the first targeted and programmable Accurin to reach the clinic from BIND's proprietary drug that creates targeted therapeutics designed to accumulate at the site of disease for high and maximum . BIND-014 employs a combination of a targeted biodegradable nanoparticle and , a proven drug. The ongoing Phase 1 study has reached a dose of 75 mg/m2 with dose escalation continuing and BIND-014 continues to be well-tolerated in the study.

"The early clinical activity observed with BIND-014 in patients with advanced or metastatic solid tumor cancers is encouraging," commented Daniel D. Von Hoff, M.D., F.A.C.P., Principal Investigator for the study and Physician-in-Chief and Distinguished Professor at the Translational Genomics Research Institute () and Chief Scientific Officer for US Oncology and the Scottsdale Clinical Research Institute. "There is a critical need for targeted treatment options for patients with difficult to treat solid tumors and we look forward to further evaluating the potential of BIND-014."

"The emerging BIND-014 clinical data are showing exciting signals of activity, validating the potential for the revolutionary impact of nanomedicines for the treatment of cancer," commented Philip W. Kantoff, MD, Chief Clinical Research Officer, Dana-Farber Cancer Institute, and Professor of Medicine, Harvard Medical School. "What's equally exciting is that I have never witnessed a potentially revolutionary technology go from concept to human clinical testing as rapidly as BIND-014, and this is credit to the world-class team of scientists, engineers, physicians, for-profit and non-profit organizations that have converged to advance this technology."

In a late-breaking poster presentation entitled "A Phase 1, Open Label, Safety, Pharmacokinetic and Pharmacodynamic Dose Escalation Study of BIND-014 Given by IV Infusion to Patients with Advanced or Metastatic Cancer," BIND presented clinical data consistent with preclinical observations in which drug concentration at the tumor site and efficacy in multiple tumor types was demonstrated:

  • Preliminary evidence of anti-tumor activity during dose escalation with evidence of anti-tumor activity in six of the 17 patients treated ranging from one durable confirmed partial response (cervical cancer) and five with stabilization of disease (pancreatic, colorectal, bile duct, tonsillar and anal cancer).
  • Evidence of antitumor activity in cancers in which conventional docetaxel has minimal activity.
  • At all dose levels studied, with 75 mg/m2 reached to date, BIND-014 was generally well-tolerated with no new toxicities observed. Dose escalation continues.
  • Strong translation of pharmacokinetic data from preclinical findings to Phase 1 clinical data with highly differentiated PK profile from conventional docetaxel and strong dose linearity across doses. The clinical results are consistent with the preclinical findings that BIND-014 concentrates drug activity in the tumor resulting in improved efficacy.
"We are very pleased with these data as our ongoing clinical study with BIND-014 lays a strong foundation to advance into Phase 2 development later this year. In addition, these data show the emerging potential of BIND-014 to be a significant new cancer therapy for patients by fundamentally changing the pharmacology of docetaxel allowing it to differentially concentrate in the tumors by up to ten-fold, as shown in our preclinical models, for better clinical efficacy across multiple cancers including those in which conventional docetaxel has minimal activity," said Scott Minick, President and Chief Executive Officer of BIND Biosciences. "BIND-014 is the clinical validation of BIND's Accurin technology platform, and marks an important milestone for the field of nanomedicine, BIND and, most importantly, patients."

The Phase 1 study has an ascending, intravenous dose design. The objectives of the study are to determine the safety, tolerability and maximum tolerated dose of BIND-014 and to assess preliminary evidence of antitumor activity. This clinical study is being conducted at the Virginia G. Piper Cancer Center at Scottsdale Healthcare in Scottsdale, Arizona, in collaboration with the Translational Genomics Research Institute and the Scottsdale Healthcare Research Institute, the Karmanos Cancer Institute in Detroit, Michigan, and Marin Specialty Care in Greenbrae, California.

About BIND-014

BIND-014 is a programmable nanomedicine that combines a targeting ligand and a therapeutic nanoparticle. BIND-014 contains docetaxel, a proven cancer drug which is approved in major cancer indications including breast, prostate and lung, encapsulated in FDA-approved biocompatible and biodegradable polymers. BIND-014 is targeted to prostate specific membrane antigen (PSMA), a cell surface antigen abundantly expressed on the surface of cancer cells and on new blood vessels that feed a wide array of solid tumors. In preclinical cancer models,

BIND-014 was shown to deliver up to ten-fold more docetaxel to tumors than an equivalent dose of conventional docetaxel. The increased accumulation of docetaxel at the site of disease translated to marked improvements in antitumor activity and tolerability. BIND-014 is currently in Phase 1 human clinical testing in cancer patients with advanced or metastatic solid tumor cancers (NCT01300533). The early development of BIND-014 was funded in part by the National Cancer Institute and the U.S. National Institutes of Standards and Technology (NIST) under its Advanced Technology Program (ATP).

Explore further: TGen, Virginia G. Piper Cancer Center studying new breast cancer drug

Related Stories

TGen, Virginia G. Piper Cancer Center studying new breast cancer drug

July 20, 2011
A new drug targeting the PI3K gene in patients with advanced breast cancer shows promising results in an early phase I investigational study conducted at Virginia G. Piper Cancer at Scottsdale Healthcare, according to a presentation ...

FDA approves new skin cancer drug

February 1, 2012
A new skin cancer drug tested for the first time in the world five years ago at the Virginia G. Piper Cancer Center at Scottsdale Healthcare just received expedited approval by the U.S. Food and Drug Administration, a remarkable ...

Recommended for you

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.