Omega-3 fatty acids may help to reduce the physical harm caused by smoking

April 20, 2012

Omega-3 fatty acids may help to reduce the physical harm caused by smoking, according to a new study presented at the World Congress of Cardiology.

The study, carried out in Greece, assessed the effect of four-week oral treatment with 2 g/day of omega-3 fatty acids on the arterial wall properties of . The results showed that short-term treatment with omega-3 fatty acids improves arterial stiffness and moderates the acute smoking-induced impairment of vascular elastic properties in smokers.

"These findings suggest that omega-3 fatty acids inhibit the detrimental effects of smoking on arterial function, which is an independent of ," said Dr. Gerasimos Siasos, University of Athens Medical School, 1st Department of Cardiology, "Hippokration" Hospital. "The cardioprotective effects of omega-3 fatty acids appear to be due to a synergism between multiple, intricate mechanisms involving anti-inflammatory and anti-atherosclerotic effects. Furthermore, AHA recommends that people without documented history of should consume a variety of fish (preferably oily – rich in omega-3 fatty acids) at least twice per week."

"The World Heart Federation strongly encourages all smokers to quit," said Dr Kathryn Taubert, Chief Science Officer at the World Heart Federation. "The only way to protect your body from the harmful effects of tobacco is to stop smoking. We encourage all people, both smokers and non-smokers, to eat healthy diets, which includes foods rich in omega-3 fatty acids."

Explore further: Fatty acids fight cancer spread

Related Stories

Fatty acids fight cancer spread

April 10, 2012
Tiny agents found in omega-3 could potentially be used to block the path of primary cancer tumours, preventing the advance to secondary stage cancers according to pharmacy researchers at the University of Sydney.

Recommended for you

Mouse studies shed light on how protein controls heart failure

October 18, 2017
A new study on two specially bred strains of mice has illuminated how abnormal addition of the chemical phosphate to a specific heart muscle protein may sabotage the way the protein behaves in a cell, and may damage the way ...

Newborns with trisomy 13 or 18 benefit from heart surgery, study finds

October 18, 2017
Heart surgery significantly decreases in-hospital mortality among infants with either of two genetic disorders that cause severe physical and intellectual disabilities, according to a new study by a researcher at the Stanford ...

Saving hearts after heart attacks: Overexpression of a gene enhances repair of dead muscle

October 17, 2017
University of Alabama at Birmingham biomedical engineers report a significant advance in efforts to repair a damaged heart after a heart attack, using grafted heart-muscle cells to create a repair patch. The key was overexpressing ...

High blood pressure linked to common heart valve disorder

October 17, 2017
For the first time, a strong link has been established between high blood pressure and the most common heart valve disorder in high-income countries, by new research from The George Institute for Global Health at the University ...

Blood cancer gene could be key to preventing heart failure

October 16, 2017
A new study, published today in Circulation, shows that the gene Runx1 increases in damaged heart muscle after a heart attack. An international collaboration led by researchers from the University of Glasgow, found that mice ...

Mitochondrial DNA could predict risk for sudden cardiac death, heart disease

October 11, 2017
Johns Hopkins researchers report that the level, or "copy number," of mitochondrial DNA—genetic information stored not in a cell's nucleus but in the body's energy-creating mitochondria—is a novel and distinct biomarker ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.