Study confirms genetic predictor for Fuchs' corneal dystrophy

May 7, 2012

Mayo Clinic and University of Oregon researchers have confirmed that a genetic factor called a repeating trinucleotide is a strong predictor of an individual's risk of developing the eye condition Fuchs' dystrophy. The findings were being presented today at the annual conference of the Association for Research in Vision and Ophthalmology in Orlando, Fla.

Fuchs' dystrophy is an that occurs when the cells at the back of the cornea deteriorate, causing fluid buildup resulting in swelling and cloudy vision. Fuchs' can be inherited. Until recently, the cause for most cases was unknown, but Mayo researchers showed a variation in the gene for transcription factor 4 (TCF4) was a major cause of Fuchs'.

The findings are based on an initial genome-wide association study that revealed a link between Fuchs' dystrophy and the TCF4 gene. Mayo researchers further defined the association with Fuchs' to be due to unusually long segments of repeated in the gene. In this case, three nucleotide residues (aka trinucleotide) repeat more than 40 times, some as high as several thousand repeats.

"Those long repeats of trinucleotides cause havoc, impacting the coding of the TCF4 protein," says lead researcher Keith Baratz, M.D., a Mayo Clinic ophthalmologist who will present at the conference. Characteristics of trinucleotide repeat diseases include later onset of the condition and .

The study showed that a particular repeating trinucleotide, TGC in the TCF4 gene, is a strong predictor of disease. Researchers say that while Fuchs' dystrophy has other causes, TCF4 repeat expansion is a major cause of the condition in the patients in the Mayo study, accounting for about three-quarters of cases.

Explore further: Corneal thickness linked to early stage Fuchs' Endothelial Corneal Dystrophy

Related Stories

Corneal thickness linked to early stage Fuchs' Endothelial Corneal Dystrophy

April 9, 2012
A national consortium of researchers has published new findings that could change the standard of practice for those treating Fuchs' Endothelial Corneal Dystrophy (FECD), a disease characterized by cornea swelling that can ...

Scientists find another clue to the origins of degenerative diseases

April 11, 2011
For years, researchers in genome stability have observed that several neurodegenerative diseases—including Huntington's disease—are associated with cell-killing proteins that are created during expansion of a CAG/CTG ...

Recommended for you

Combination of type 2 diabetes and sleep apnoea indicates eyesight loss within four years

July 4, 2017
Research led by the University of Birmingham has discovered that patients who suffer from both Type 2 diabetes and obstructive sleep apnoea are at greater risk of developing a condition that leads to blindness within an average ...

Nearly 60% of pinkeye patients receive antibiotic eye drops, but they're seldom necessary

June 28, 2017
A new study suggests that most people with acute conjunctivitis, or pinkeye, are getting the wrong treatment.

Magnetic implants used to treat 'dancing eyes'

June 26, 2017
A research team has successfully used magnets implanted behind a person's eyes to treat nystagmus, a condition characterised by involuntary eye movements.

Drug shows promise against vision-robbing disease in seniors

June 21, 2017
An experimental drug is showing promise against an untreatable eye disease that blinds older adults—and intriguingly, it seems to work in patients who carry a particular gene flaw that fuels the damage to their vision.

Reproducing a retinal disease on a chip

June 15, 2017
Approximately 80% of all sensory input is received via the eyes, so suffering from chronic retinal diseases that lead to blindness causes a significant decrease in the quality of life (QOL). And because retinal diseases are ...

New gene therapy for vision loss proven safe in humans

May 16, 2017
In a small and preliminary clinical trial, Johns Hopkins researchers and their collaborators have shown that an experimental gene therapy that uses viruses to introduce a therapeutic gene into the eye is safe and that it ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.