Good vibrations: using sound to treat disease

May 7, 2012, University of Toronto

Many of us love massages, but imagine a massage so deep that tissues, organs and cells could also be ‘massaged’.

That’s exactly what Vibroacoustic Therapy, a low frequency sound massage, is clinically proven to do, and new research at U of T suggests that it may help people with debilitating diseases.

“It is basically stimulating the body with very low sound – like sitting on a subwoofer,” said Professor Lee Bartel of the Faculty of Music.  “But it requires special speakers that carry sound almost too low to hear in a way that changes it basically to something you feel instead of hear.”

Bartel and his team in the new Music and Health Research Collaboratory (MaHRC) are exploring the medical effects of low frequency sound and have shown that this therapy can play a key role in reducing the symptoms of Parkinson’s disease.

Vibroacoustic therapy (VAT) consists of low sound frequencies that are transmitted to the body and mind through special transducers that convert the sound to inner body massage. MaHRC associates Heidi Ahonen and Quincy Almeida treated two groups of Parkinson’s patients (20 with dominant tremor symptoms and 20 with slow/rigid movement symptoms) with five minutes of 30 Hz vibration.

Both groups showed improvements in all symptoms, including less rigidity and better walking speed with bigger steps and less tremor.

“There have been several studies using vibration from sound with Parkinson’s,” said Bartel   “It has been known for over 100 years that vibration (like riding in a wagon on cobblestones) helped relieve some symptoms. So the scientific study of the effect of low frequency sound was a natural connection. Also known is that 40 Hz brain waves seem to be carriers of information between the parts of the brain that control movement. So adding extra stimulation in that zone should help that communication and so assist in movement control.”

Bartel, Founding and Acting Director of MaHRC, says the goal of low frequency sound studies with Parkinson’s is to determine which approach is most effective, how much and how often treatment is needed, and whether medication can be reduced. Vibroacoustic Therapy frequencies, between 20 and 100 Hz or pulses per second, correspond to brainwave activities and function that are currently being explored in neuroscience. 

But the effects of Vibroacoustic Therapy extend beyond the brain. It also provides deep physical cellular stimulation to skin, muscles and joints, resulting in decreased pain and increased mobility. Like hand/mechanical , vibroacoustic therapy aids circulation, relaxes muscles, and feels good.

Bartel points to research that shows that “several medical conditions including Parkinson’s and neuralgic pain like fibromyalgia, may be related to a common brain mechanism – a brain rhythm disorientation between the inner brain and the outer cortex. Since the rhythmic pulses of music can drive and stabilize these, we speculate that low frequency sound might help in fibromyalgia as well as Parkinson’s.”

Bartel’s team is now looking at the role of vibroacoustic therapy as a treatment for patients with fibromyalgia.

“Although it is too early to form any conclusions, there is encouraging data indicating that treating fibromyalgia patients with doses of 40 Hz sound seems to reduce pain.” 

“It is truly an exciting time for music medicine – the idea of developing audioceuticals (prescribable sound) points to a whole new direction for music , and the potential for MaHRC to lead in this is very exciting for me” said Bartel.      

Explore further: Music therapy helps patients cope with illness, regain health

Related Stories

Music therapy helps patients cope with illness, regain health

June 16, 2011
In the months since the shooting that left Arizona Rep. Gabrielle Giffords with a critical brain injury, music therapy has been a key to her recovery.

Hope for those with a depressive disposition

January 30, 2012
Good news for the 13 per cent of the population with depressive personality traits: their negative outlook does not have to be permanent. This has been shown by psychologist Rachel Maddux in new research from Lund University ...

Structure of Parkinson's disease protein identified

October 24, 2011
A team of researchers from the Petsko-Ringe and Pochapsky laboratories at Brandeis have produced and determined the structure of alpha-synuclein, a key protein associated with Parkinson’s disease.

Recommended for you

Observing brain plasticity during cello training

June 15, 2018
Music acquisition provides an excellent model of neural plasticity, and has become a hot research subject in neurology. Music performance provides an unmatched array of neural complexities revealing how neural networks are ...

New discovery about the brain's water system may prove beneficial in stroke

June 15, 2018
Water is transported from the blood into the brain via an ion transporter, according to a new study on mice conducted at the University of Copenhagen. If the mechanism can be targeted with medicine, it may prove relevant ...

Study shows how intensive instruction changes brain circuitry in struggling readers

June 14, 2018
The early years are when the brain develops the most, forming neural connections that pave the way for how a child—and the eventual adult—will express feelings, embark on a task, and learn new skills and concepts.

When emotional memories intrude, focusing on context could help, study finds

June 14, 2018
When negative memories intrude, focusing on the contextual details of the incident rather than the emotional fallout could help minimize cognitive disruption and redirect the brain's resources to the task at hand, suggests ...

The neurons that rewrite traumatic memories

June 14, 2018
Memories of traumatic experiences can lead to mental health issues such as post-traumatic stress disorder (PTSD), which can destroy a person's life. It is currently estimated that almost a third of all people will suffer ...

Researchers find transport molecule has unexpected role

June 14, 2018
UT Southwestern researchers recently reported a basic science finding that might someday lead to better treatments for neurodegenerative diseases like a hereditary form of Lou Gehrig's disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.