Mystery of the missing breast cancer genes

May 8, 2012

Researchers from the University of Adelaide are hoping to better understand why the mutated genes for breast and ovarian cancer are not passed on more frequently from one generation of women to the next.

That's despite a documented link between genes and increased fertility in women.

Dr Jack da Silva from the University's School of Molecular & Biomedical Science says that because women who carry breast cancer genes are more fertile, in theory they have a greater chance of passing these genes on to future generations.

"A recent study in the United States found that mutations in the breast cancer genes BRCA1 and BRCA2 were directly linked with a 50% increase in the fertility of women, which is a huge number," Dr da Silva says.

"With such an increased fertility rate, you would expect to see a high frequency of these cancer-causing genes in modern populations, but in fact that is not the case - the frequencies are relatively low."

In a paper being published today in the Proceedings of the Royal Society B, he argues that the so-called "grandmother effect" may in part be the reason behind this phenomenon.

"In an earlier study, researchers found that post-menopausal women create a 'grandmother effect' - that is, the longer they live, the more they are able to support their daughters and their grandchildren, thereby creating an environment in which more grandchildren are born.

"The reverse of this is that who die earlier - such as from breast or , which are usually post-menopausal - will no longer be able to support their daughters and grandchildren. This has the effect of limiting the number of grandchildren born, and therefore the chances of passing on the mutated genes from one generation to the next is also limited," Dr da Silva says.

However, the "grandmother effect" does not entirely negate the increased fertility caused by , he says.

"Our change to today's industrial and technological age has been relatively rapid in human history. For most of our existence, we have been hunter-gatherers. During this time, female fertility was limited, and this may have reduced the increase in fertility caused by mutations of these genes."

Dr da Silva says further studies examining modern-day hunter-gatherer societies might shed more light on how and why the spread of these genetic mutations occurs across generations.

Explore further: Breast cancer patients lack adequate fertility preservation advice

Related Stories

Breast cancer patients lack adequate fertility preservation advice

November 7, 2011
(Medical Xpress) -- Women may not receive adequate information on fertility preservation before breast cancer treatment, according to research presented at the National Cancer Research Institute (NCRI) Cancer Conference in ...

Recommended for you

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.