Mystery of the missing breast cancer genes

May 8, 2012

Researchers from the University of Adelaide are hoping to better understand why the mutated genes for breast and ovarian cancer are not passed on more frequently from one generation of women to the next.

That's despite a documented link between genes and increased fertility in women.

Dr Jack da Silva from the University's School of Molecular & Biomedical Science says that because women who carry breast cancer genes are more fertile, in theory they have a greater chance of passing these genes on to future generations.

"A recent study in the United States found that mutations in the breast cancer genes BRCA1 and BRCA2 were directly linked with a 50% increase in the fertility of women, which is a huge number," Dr da Silva says.

"With such an increased fertility rate, you would expect to see a high frequency of these cancer-causing genes in modern populations, but in fact that is not the case - the frequencies are relatively low."

In a paper being published today in the Proceedings of the Royal Society B, he argues that the so-called "grandmother effect" may in part be the reason behind this phenomenon.

"In an earlier study, researchers found that post-menopausal women create a 'grandmother effect' - that is, the longer they live, the more they are able to support their daughters and their grandchildren, thereby creating an environment in which more grandchildren are born.

"The reverse of this is that who die earlier - such as from breast or , which are usually post-menopausal - will no longer be able to support their daughters and grandchildren. This has the effect of limiting the number of grandchildren born, and therefore the chances of passing on the mutated genes from one generation to the next is also limited," Dr da Silva says.

However, the "grandmother effect" does not entirely negate the increased fertility caused by , he says.

"Our change to today's industrial and technological age has been relatively rapid in human history. For most of our existence, we have been hunter-gatherers. During this time, female fertility was limited, and this may have reduced the increase in fertility caused by mutations of these genes."

Dr da Silva says further studies examining modern-day hunter-gatherer societies might shed more light on how and why the spread of these genetic mutations occurs across generations.

Explore further: Breast cancer patients lack adequate fertility preservation advice

Related Stories

Breast cancer patients lack adequate fertility preservation advice

November 7, 2011
(Medical Xpress) -- Women may not receive adequate information on fertility preservation before breast cancer treatment, according to research presented at the National Cancer Research Institute (NCRI) Cancer Conference in ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.