Simple motions, complex tool New robot successfully performs surgical closure in a beating heart

May 23, 2012, Children's Hospital Boston

A new robotic device may be the solution to a longstanding surgical dilemma: how to precisely manipulate tools within the delicate tissues of a beating heart, report researchers at Boston Children’s Hospital. The team’s experiments with both ex vivo and in vivo models have demonstrated the efficacy of a concentric tube robot in closing a common defect, patent foramen ovale, while the heart continues to beat. The robot also allows surgeons to gauge and adjust the amount of force they are exerting during the procedure, according to a study published online May 8 by the International Journal of Robotics Research.

Lead investigator Pierre E. Dupont, PhD, chief of Pediatric Cardiac Bioengineering and staff scientist in the Department of Cardiac Surgery at Boston Children’s, and his colleagues set out to identify a robotic technology capable of performing intracardiac surgery without the inherent risks of stopping the heart. “Minimally invasive laparoscopic surgery has used chopstick-like tools. However, from a minimally invasive perspective, straight lines aren’t the best way to maneuver through body passages or round, delicate tissues,” Dupont, of Boston Children’s Hospital, says. “Catheterization also poses challenges because the innate flexibility of a catheter limits clinicians’ ability to manipulate tissue.”

In response to this problem, Dupont devised the concept of concentric tube robots as a means to deliver and maneuver tools inside the heart. He next collaborated with  Microfabrica, Inc. to develop tools, using metal microelectromechanical systems (MEMS) technology, that could be deployed by the robot for the surgical tasks of tissue approximation and removal. “Because there is so little room inside the heart to sew, and because the motions of sewing are complex, we’ve developed a device that enables customized adjustment of the approximation, comparable to suturing,” Dupont explains. “But the device utilizes very simple robot motions for deployment.”  

The team chose to demonstrate the robot’s capabilities by surgically closing patent formaen ovales—holes between the heart’s atria that normally close just after birth, but remain open in a small percentage of the population. While many individuals with patent foramen ovale remain asymptomatic, the defect heightens the risk of stroke and heart attack by allowing blood clots or particles to cross from the right atrium into the left.

In a series of three in vivo trials with porcine models, the robot—guided by three-dimensional ultrasound and fluoroscopic imaging—wassuccessfully steered into the still-beating and used to close the foramen ovale. Surgeons were also able to use motion “cues”—for example, rotation of the open metal wings—to monitor the amount of force deployed. “We selected this procedure because it is the simplest one to demonstrate the approximation of non-overlapping tissue layers—a task that cannot be performed by catheter,” says Dupont. “Our goal is to establish the overall potential of the technology by demonstrating ‘building block’ tasks that apply to every intracardiac surgery.”

Dupont and colleagues believe their robot has many potential applications across and beyond the cardiac arena. Among other initiatives, they are targeting the development of a Magnetic Resonance (MR)-compatible version that could enter the brain through a small surgical corridor to access deep-seated tumors and lesions—capturing both MR and endoscopic images while minimizing damage to healthy surrounding tissue.

Andrew H. Gosline, PhD, of Boston Children’s Department of Cardiac Surgery, was first author on the paper. The study was supported by two grants from the National Institutes of Health.

Explore further: New tool enhances view of muscles

Related Stories

New tool enhances view of muscles

January 23, 2012
Simon Fraser University associate professor James Wakeling is adding to the arsenal of increasingly sophisticated medical imaging tools with a new signal-processing method for viewing muscle activation details that have never ...

Building a drug delivery platform to regenerate heart tissue

May 21, 2012
(Medical Xpress) -- While current heart-attack treatments mainly try to preserve healthy heart tissue, scientists have been finding compounds that can stimulate growth of new tissue – either by getting heart muscle ...

Device helps with Sudden Infant Death Syndrome detection

May 9, 2012
University of Texas at Arlington researchers have obtained a patent for a device aimed at saving babies’ lives through improved and rapid detection of Sudden Infant Death Syndrome.

Recommended for you

Drug may help surgical patients stop opioids sooner

December 13, 2017
(HealthDay)—Opioid painkillers after surgery can be the first step toward addiction for some patients. But a common drug might cut the amount of narcotics that patients need, a new study finds.

Children best placed to explain facts of surgery to patients, say experts

December 13, 2017
Getting children to design patient information leaflets may improve patient understanding before they have surgery, finds an article in the Christmas issue of The BMJ.

Burn victim saved by skin grafts from identical twin (Update)

November 23, 2017
A man doomed to die after suffering burns across 95 percent of his body was saved by skin transplants from his identical twin in a world-first operation, French doctors said Thursday.

Is a common shoulder surgery useless?

November 21, 2017
(HealthDay)—New research casts doubt on the true effectiveness of a common type of surgery used to ease shoulder pain.

Study shows electric bandages can fight biofilm infection, antimicrobial resistance

November 6, 2017
Researchers at The Ohio State University Wexner Medical Center have shown - for the first time - that special bandages using weak electric fields to disrupt bacterial biofilm infection can prevent infections, combat antibiotic ...

Obesity increases incidence, severity, costs of knee dislocations

November 3, 2017
A new study of more than 19,000 knee dislocation cases in the U.S. between 2000 and 2012 provides a painful indication of how the nation's obesity epidemic is changing the risk, severity and cost of a traumatic injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.