Detector of DNA damage: Structure of a repair factor revealed

June 19, 2012

Double-stranded breaks in cellular DNA can trigger tumorigenesis. Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich, Germany, have determined the structure of a protein involved in the repair and signaling of DNA double-strand breaks. The work throws new light on the origins of neurodegenerative diseases and certain tumor types.

Agents such as radiation or can cause double-stranded breaks in genomic DNA, which facilitate the development of tumors or the neurodegenerative disorders ataxia telangiectasia (AT) and AT-like disease (ATLD). Hence efficient repair mechanisms are essential for and function. The so-called MRN complex is an important component of one such system, and its structure has just been elucidated by a team led by Professor Karl-Peter Hopfner of LMU's Gene Center.

The MRN complex consists of the nuclease Mre11, the ATPase Rad50 and the protein Nbs1. Nbs1 is responsible for recruiting the protein ATM, which plays a central role in early stages of the cellular response to , to the site of damage. "How the MRN complex actually recognizes double-stranded breaks is still not clear," says Hopfner. He and his colleagues therefore set out to clarify the issue by analyzing the structures of mutant, functionally defective versions of the complex.

"We found that pairs of Mre11 molecules form a flexible dimer, which is stabilized by Nbs1." Mutations in different subunits of the complex are associated with distinct syndromes, marked by a predisposition to certain cancers, sensitivity to radiation or neurodegeneration. Hopfner's results help to explain these differences. For instance, the mutation linked to ATLD lies within the zone of contact between Mre11 and Nbs1, and may inhibit activation of ATM by weakening their interaction.

Related Stories

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.