Finding genetic proof of coronary artery disease risk

June 15, 2012

University of Minnesota School of Public Health researchers have reported two high-signal genetic markers correlated with coronary artery disease (CAD) that should help define genetic fingerprints that can signal an increased risk of developing the disease.

The results also offer biological and clinical data supporting future research into the genetic markers and their relationship to CAD, a condition that impacts more than 13 million Americans each year.

The research, led by Weihong Tang, Ph.D., M.S., M.D., a expert and assistant professor of epidemiology and community health in the University of Minnesota's School of Public, is published online today in the .

"Our research looked at two common clinical blood tests used to detect deficiencies in clotting process, the Activated Partial Thromboplastic Time (aPTT) test and the Prothrombin Time (PT) test," said Tang. "Our goal was to see if there were genetic markers or signals within the tests that could indicate which patients were at higher risk for . What we found was that within our sample, there were some highly expressive genetic markers that indeed signaled an increased risk."

Tang notes that this study focused on only white Americans, and that she and her colleagues would like to expand the survey's reach into . She hopes that a larger study will confirm the and make the information more accessible for physicians as they monitor patients for CAD risk factors.

"There is a lot of work still to be done, but our findings should set a foundation for new types of testing that will help physicians find and treat clotting diseases in the general population," said Tang.

Explore further: Researchers aim to see if patients are helped by genetic tests

Related Stories

Recommended for you

New insights on triggering muscle formation

April 26, 2017

Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a previously unrecognized step in stem cell-mediated muscle regeneration. The study, published in Genes and Development, provides new ...

Risk of obesity influenced by changes in our genes

April 25, 2017

These changes, known as epigenetic modifications, control the activity of our genes without changing the actual DNA sequence. One of the main epigenetic modifications is DNA methylation, which plays a key role in embryonic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.