Beating hearts are finally still with 4D PET image reconstruction

June 11, 2012

A development in 4D image reconstruction compensates for blurring caused by the beating of the heart, say researchers at the Society of Nuclear Medicine's 59th Annual Meeting. The new method provides sharper-than-ever images of cardiac function to help pinpoint heart defects for better diagnoses and treatment.

Cardiovascular disease is the number one killer across the globe. More people die from diseases of the heart and than any other cause of death, according the . This technique uses positron (PET), which creates a visualization of the heart's viability, allowing physicians to view potential .

The new method of 4D PET image reconstruction works by taking data from specific points—almost like taking individual frames of a film reel—when patients are taking air into their lungs or when blood is being forced by a contraction of their heart muscle. Where other diagnostic imaging procedures—such as X-rays, computed tomography and ultrasound—offer predominately anatomical pictures, PET allows physicians to see how the heart is functioning. The visual representation of this functional information can be further enhanced with image reconstruction techniques such as this one, which uses quantitative image data and a special algorithm that transforms the original image into a crystal-clear 4D image that has none of the hazy areas ordinarily caused by the rhythmic movements of the heart and lungs.

"People have previously worked on compensating for either cardiac or respiratory motion in image reconstruction in the past, but our research is the first viable reconstruction of a PET image with compensation for both cardiac and respiratory motion using all the PET data," says Si Chen, Ph.D.,lead author of the study and research scientist for the department of engineering physics at Tsinghua University in Beijing, China.

Researchers used PET data from multiple cardiac stress tests to gauge the effect of the new method on image resolution and signal-to-noise ratio, which is a measurement comparing the desired imaging signal to the background, or noise. The imaging contrast between myocardium, or muscle walls of the heart, and heart chambers in the reconstructed 4D images was significantly improved—by 15 percent—with the new method. In addition, image noise was found to be 60 percent lower than with conventional methods of image reconstruction with cardiac gating. This technology has potential benefits beyond better image quality. The increased signal-to-noise ratio of reconstructed PET images can also be used to limit patient exposure and table time.

"This research provides an opportunity to further improve the diagnostic accuracy of cardiac PET imaging, which can be exchanged to some degree for faster scanning and lower dose," says Chen.

An estimated two to three years of research, including multiple phases of clinical evaluation, will need to be conducted before this technique can be rolled out for general clinical use.

Explore further: Greater cancer detection is possible with 4-D PET image reconstruction

Related Stories

Greater cancer detection is possible with 4-D PET image reconstruction

June 6, 2011
A study introduced at SNM's 58th Annual Meeting is advancing a positron emission tomography (PET) imaging method that uses new 4D image reconstruction to achieve the highest diagnostic capability for the detection of cancer. ...

Irregular breathing can affect accuracy of 4-D PET/CT

June 7, 2011
A study presented at SNM's 58th Annual Meeting focuses on the effect that breathing irregularities have on the accuracy of 4D positron emission tomography (PET) scans and outlines a PET imaging method that reduces "motion ...

Molecular imaging detects ischemic heart disease in diabetics

June 6, 2011
Research introduced at SNM's 58th Annual Meeting may lead to much-needed cardiovascular disease screening for diabetic patients at risk of ischemic heart disease, a disorder marked by significantly reduced blood flow in the ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.