Novel live-cell imaging technique offers new opportunities to understanding immune responses in the skin

June 20, 2012, Agency for Science, Technology and Research (A*STAR), Singapore
An image of mouse ear skin acquired by multiphoton microscopy showing hair follicles (green), blood vessels (red) and collagen fibers (blue)

Biologists often use a technique called multi-photon imaging to examine live cells. The technique is unique in that it uses multiple photons of high wavelengths to stimulate fluorescent labels, causing them to emit light. It is superior to more conventional fluorescence imaging techniques, such as confocal microscopy, as it has a higher spatial resolution and enables greater depth of penetration into tissues. Lai Guan Ng at the A*STAR Singapore Immunology Network and co-workers have extended the capability of multi-photon imaging further so that it can now be used to directly visualize immune responses in skin.

The skin is known to have two layers: the dermis and the epidermis. The epidermis is predominantly avascular, containing specialized called keratinocytes, whereas the underlying dermis contains highly vascularized lymphatic vessels. Conventional only allows imaging into the epidermis and limited structures of the dermis below. The multi-photon imaging technique developed by Ng and his team offers simultaneous imaging of multiple cellular and structural components through the epidermis and into the dermis (see image).

The researchers provide a step-by-step guide to preparing a live mouse ear skin model which can be used to probe skin response to localized injury or disease over several hours. They placed a glass slide over the ear, which acts as a window through which to observe the tissue without surgery. The mouse ear is a good site for imaging because it requires minimal pre-treatment and is easily accessible.

The researchers could take images more quickly — for example, on a per-second basis — by adjusting various experimental parameters, thereby enabling them to study fast-moving cells such as rolling leukocytes.

The researchers recommend albino mice to prevent any artifacts arising from photodamage to the skin. They provide a comprehensive checklist for preparation of the ear for imaging to ensure that the integrity of the blood vessels is not being compromised. They also describe a protocol to induce local laser injury, the biological response of which can then be studied. The protocol has a troubleshooting section that can be used to resolve problems that others may encounter when they come to repeat the experiment.

So far, the researchers have used their approach to study a variety of skin conditions, for example, parasitic infection, T-cell lymphoma migration and neutrophil response to sterile injury amongst others.

“We envision that this approach will not only continue to unravel new knowledge relating to the skin immune system, but also gradually become a standard approach for assessing drug delivery as well as percutaneous and intradermal vaccine applications in preclinical studies,” says Ng.

Explore further: Gatekeeper signal controls skin inflammation

More information: Li, J. L.-Y. et al. Intravital multiphoton imaging of immune responses in the mouse ear skin. Nature Protocols 7, 221–234 (2012).

Related Stories

Gatekeeper signal controls skin inflammation

January 26, 2012
A new study unravels key signals that regulate protective and sometimes pathological inflammation of the skin. The research, published online on January 26th in the journal Immunity by Cell Press, identifies a "gatekeeper" ...

Human skin model shows signaling pathway effects from low dose exposure

April 25, 2012
(Medical Xpress) -- In studies on a human skin tissue model, researchers at Pacific Northwest National Laboratory used a systems biology approach to show that an ionizing radiation dose mimicking that received during a CT ...

Recommended for you

Improving vaccines for the elderly by blocking inflammation

January 22, 2018
By identifying why skin immunity declines in old age, a UCL-led research team has found that an anti-inflammatory pill could help make vaccines more effective for elderly people.

Novel genomic tools provide new insight into human immune system

January 19, 2018
When the body is under attack from pathogens, the immune system marshals a diverse collection of immune cells to work together in a tightly orchestrated process and defend the host against the intruders. For many decades, ...

First vaccine developed against grass pollen allergy

January 18, 2018
Around 400 million people worldwide suffer in some form or other from a grass pollen allergy (rhinitis), with the usual symptoms of runny nose, cough and severe breathing problems. In collaboration with the Viennese firm ...

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.