Scientists identify first gene in programmed axon degeneration

June 7, 2012

Degeneration of the axon and synapse, the slender projection through which neurons transmit electrical impulses to neighboring cells, is a hallmark of some of the most crippling neurodegenerative and brain diseases such as amyotrophic lateral sclerosis (ALS), Huntington's disease and peripheral neuropathy. Scientists have worked for decades to understand axonal degeneration and its relation to these diseases. Now, researchers at the University of Massachusetts Medical School are the first to describe a gene – dSarm/Sarm1 – responsible for actively promoting axon destruction after injury. The research, published today online by Science, provides evidence of an exciting new therapeutic target that could be used to delay or even stop axon decay.

"This discovery has the potential to have a profound impact on our understanding of neurodegenerative diseases, much like the discovery of apoptosis (programmed cell death) fundamentally changed our understanding of cancer," said Marc R. Freeman, PhD, associate professor of neurobiology at the University of Massachusetts Medical School and lead investigator on the study. "Identification of this gene allows us to start asking exciting new questions about the role of axon death in neurodegenerative diseases. For example, is it possible that these pathways are being inappropriately activated to cause premature axon death?"

For more than a century, scientists believed that injured axons severed from the neuron cell body passively wasted away due to a lack of nutrients. However, a mouse mutation identified in the early 1990s – called slow Wallerian degeneration (Wlds) – was able to suppress axon degeneration for weeks. This finding forced scientists to reassess Wallerian degeneration, the process through which an injured axon degenerates, as a passive process and consider the possibility that an active program of axon auto-destruction, akin to apoptotic death, was at work instead.

If Wallerian degeneration was an active process, hypothesized Dr. Freeman, a Howard Hughes Medical Institute Early Career Scientist, then it should be possible through forward genetic screens in Drosophila to identify mutants exhibiting Wlds-like axon protection. Freeman and colleagues screened more than 2,000 Drosophila mutants for ones that exhibited long-term survival of severed axons. Freeman says this was a heroic effort on the part of his colleagues. The screen took place over the next two and a half years, and involved seven students and post-docs in the Freeman lab—Jeannette M. Osterloh, A. Nicole Fox, PhD, Michelle A. Avery, PhD, Rachel Hackett, Mary A. Logan, PhD, Jennifer M. MacDonald, Jennifer S. Zeigenfuss—who performed the painstaking and labor-intensive experiments needed on each Drosophila mutant to identify flies that suppressed axonal degeneration after nerve injury.

Through these tests, they identified three mutants (out of the 2,000 screened) where severed axons survived for the lifespan of the fly. Next generation sequencing and chromosome deficiency mapping techniques were then used to isolate the single gene affected in all three – dSarm. These were loss-of-function alleles, meaning that Drosophila unable to produce the dSarm/Sarm1 molecule exhibited prolonged axon survival for as many as 30 days after injury. Freeman and colleagues went on to show that mice lacking Sarm1, the mammalian homolog of dSarm, also displayed remarkable preservation of injured axons. These findings provided the first direct evidence that Wallerian degeneration was driven by a conserved axonal death program and not a passive response to axon injury.

"For 20 years people have been looking for a gene whose normal function is to promote axon degeneration," said Osterloh, first author on the study. "Identification of the dSarm/Sarm1 gene has enormous therapeutic potential, for example as a knockdown target for patients suffering from diseases involving axonal loss."

The next step for Freeman and colleagues is to identify additional in the axon death pathway and investigate whether any have links with specific neurodegenerative diseases. "We're already working with scientists at UMMS to understand the role axon death plays in ALS and Huntington's disease," said Freeman. "We are very excited about the possibility that these findings could have broad therapeutic potential in many neurodegenerative diseases."

Explore further: Biologists identify a key enzyme involved in protecting nerves from degeneration

Related Stories

Biologists identify a key enzyme involved in protecting nerves from degeneration

March 30, 2012
- A new animal model of nerve injury has brought to light a critical role of an enzyme called Nmnat in nerve fiber maintenance and neuroprotection. Understanding biological pathways involved in maintaining healthy nerves ...

Stress pathway identified as potential therapeutic target to prevent vision loss

February 8, 2012
A new study identifies specific cell-stress signaling pathways that link injury of the optic nerve with irreversible vision loss. The research, published by Cell Press in the February 9 issue of the journal Neuron, may lead ...

Observations refute widely held view on causal mechanism in amyotrophic lateral sclerosis

February 29, 2012
In science, refuting a hypothesis can be as significant as proving one, all the more so in research aimed at elucidating how diseases proceed with a view toward preventing, treating, or curing them. Such a discovery can save ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.