Allergies? Your sneeze is a biological response to the nose's 'blue screen of death'

July 31, 2012

Who would have thought that our noses and Microsoft Windows' infamous blue screen of death could have something in common? But that's the case being made by a new research report appearing online in The FASEB Journal. Specifically, scientists now know exactly why we sneeze, what sneezing should accomplish, and what happens when sneezing does not work properly. Much like a temperamental computer, our noses require a "reboot" when overwhelmed, and this biological reboot is triggered by the pressure force of a sneeze. When a sneeze works properly, it resets the environment within nasal passages so "bad" particles breathed in through the nose can be trapped. The sneeze is accomplished by biochemical signals that regulate the beating of cilia (microscopic hairs) on the cells that line our nasal cavities.

"While sinusitis rarely leads to death, it has a tremendous impact on quality of life, with the majority of symptoms coming from poor clearance of mucus," said Noam A. Cohen, M.D., Ph.D., a researcher involved in the work from the Department of Otorhinolaryngology- at the University of Pennsylvania in Philadelphia. "By understanding the process by which patients with sinusitis do not clear mucus from their nose and sinuses, we can try to develop new strategies to compensate for their poor mucus clearance and improve their quality of life."

To make this discovery, Cohen and colleagues used cells from the noses of mice which were grown in and measured how these cells cleared mucus. They examined how the cells responded to a simulated sneeze (puff of air) by analyzing the cells' biochemical responses. Some of the experiments were replicated in human sinus and nasal tissue removed from patients with and without sinusitis. They found that cells from patients with sinusitis do not respond to sneezes in the same manner as cells obtained from patients who do not have sinusitis. The researchers speculate that sinusitis patients sneeze more frequently because their sneezes fail to reset the nasal environment properly or are less efficient at doing so. Further understanding of why sinusitis patients have this difficulty could aid in the development of more effective medications or treatments.

"I'm confident that modern biochemical studies of ciliary beating frequency will help us find new treatments for chronic ," said Gerald Weissmann, M.D., Editor-in-Chief of The , "I'm far less confident in our abilities to resolve messy computer crashes. We now know why we sneeze. Computer crashes are likely to be a mystery forever."

More information: Ke-Qing Zhao, Andrew T. Cowan, Robert J. Lee, Natalia Goldstein, Karla Droguett, Bei Chen, Chunquan Zheng, Manuel Villalon, James N. Palmer, James L. Kreindler, and Noam A. Cohen. Molecular modulation of airway epithelial ciliary response to sneezing. FASEB J. doi:10.1096/fj.11-202184

Related Stories

Recommended for you

Exposure to larger air particles linked to increased risk of asthma in children

December 15, 2017
Researchers at The Johns Hopkins University report statistical evidence that children exposed to airborne coarse particulate matter—a mix of dust, sand and non-exhaust tailpipe emissions, such as tire rubber—are more ...

Bioengineers imagine the future of vaccines and immunotherapy

December 14, 2017
In the not-too-distant future, nanoparticles delivered to a cancer patient's immune cells might teach the cells to destroy tumors. A flu vaccine might look and feel like applying a small, round Band-Aid to your skin.

Immune cells turn back time to achieve memory

December 13, 2017
Memory T cells earn their name by embodying the memory of the immune system - they help the body remember what infections or vaccines someone has been exposed to. But to become memory T cells, the cells go backwards in time, ...

Steroid study sheds light on long term side effects of medicines

December 13, 2017
Fresh insights into key hormones found in commonly prescribed medicines have been discovered, providing further understanding of the medicines' side effects.

The immune cells that help tumors instead of destroying them

December 12, 2017
Lung cancer is the leading cause of cancer-associated deaths. One of the most promising ways to treat it is by immunotherapy, a strategy that turns the patient's immune system against the tumor. In the past twenty years, ...

Cancer gene plays key role in cystic fibrosis lung infections

December 12, 2017
PTEN is best known as a tumor suppressor, a type of protein that protects cells from growing uncontrollably and becoming cancerous. But according to a new study from Columbia University Medical Center (CUMC), PTEN has a second, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.