Allergies? Your sneeze is a biological response to the nose's 'blue screen of death'

July 31, 2012

Who would have thought that our noses and Microsoft Windows' infamous blue screen of death could have something in common? But that's the case being made by a new research report appearing online in The FASEB Journal. Specifically, scientists now know exactly why we sneeze, what sneezing should accomplish, and what happens when sneezing does not work properly. Much like a temperamental computer, our noses require a "reboot" when overwhelmed, and this biological reboot is triggered by the pressure force of a sneeze. When a sneeze works properly, it resets the environment within nasal passages so "bad" particles breathed in through the nose can be trapped. The sneeze is accomplished by biochemical signals that regulate the beating of cilia (microscopic hairs) on the cells that line our nasal cavities.

"While sinusitis rarely leads to death, it has a tremendous impact on quality of life, with the majority of symptoms coming from poor clearance of mucus," said Noam A. Cohen, M.D., Ph.D., a researcher involved in the work from the Department of Otorhinolaryngology- at the University of Pennsylvania in Philadelphia. "By understanding the process by which patients with sinusitis do not clear mucus from their nose and sinuses, we can try to develop new strategies to compensate for their poor mucus clearance and improve their quality of life."

To make this discovery, Cohen and colleagues used cells from the noses of mice which were grown in and measured how these cells cleared mucus. They examined how the cells responded to a simulated sneeze (puff of air) by analyzing the cells' biochemical responses. Some of the experiments were replicated in human sinus and nasal tissue removed from patients with and without sinusitis. They found that cells from patients with sinusitis do not respond to sneezes in the same manner as cells obtained from patients who do not have sinusitis. The researchers speculate that sinusitis patients sneeze more frequently because their sneezes fail to reset the nasal environment properly or are less efficient at doing so. Further understanding of why sinusitis patients have this difficulty could aid in the development of more effective medications or treatments.

"I'm confident that modern biochemical studies of ciliary beating frequency will help us find new treatments for chronic ," said Gerald Weissmann, M.D., Editor-in-Chief of The , "I'm far less confident in our abilities to resolve messy computer crashes. We now know why we sneeze. Computer crashes are likely to be a mystery forever."

More information: Ke-Qing Zhao, Andrew T. Cowan, Robert J. Lee, Natalia Goldstein, Karla Droguett, Bei Chen, Chunquan Zheng, Manuel Villalon, James N. Palmer, James L. Kreindler, and Noam A. Cohen. Molecular modulation of airway epithelial ciliary response to sneezing. FASEB J. doi:10.1096/fj.11-202184

Related Stories

Recommended for you

Immune system can be modulated by targeted manipulation of cell metabolism

August 21, 2017
In its attempt to fight a serious bacterial infection, caused by listeria, for example, the immune system can become so over-activated that the resulting inflammatory response and its consequences can quickly lead to death. ...

Australian researchers in peanut allergy breakthrough

August 17, 2017
Australian researchers have reported a major breakthrough in the relief of deadly peanut allergy with the discovery of a long-lasting treatment they say offers hope that a cure will soon be possible.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Study identifies a new way to prevent a deadly fungal infection spreading to the brain

August 16, 2017
Research led by the University of Birmingham has discovered a way to stop a deadly fungus from 'hijacking' the body's immune system and spreading to the brain.

Biophysics explains how immune cells kill bacteria

August 16, 2017
(Tokyo, August 16) A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. ...

How a nutrient, glutamine, can control gene programs in cells

August 15, 2017
The 200 different types of cells in the body all start with the same DNA genome. To differentiate into families of bone cells, muscle cells, blood cells, neurons and the rest, differing gene programs have to be turned on ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.